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Abstract—Real world scenarios contain many structural pat-
terns that, if appropriately extracted and modeled, can be used
to reduce problems associated with sensor failure and occlusions,
while improving planning methods in tasks such as navigation
and grasping. This paper devises a novel unsupervised procedure
that is able to learn 3D structures from unorganized point
clouds as occupancy maps. Our framework enables the learning
of unique and arbitrarily complex features using a Bayesian
Convolutional Variational Auto-Encoder that compresses local
information into a latent low-dimensional representation and then
decodes it back in order to reconstruct the original scene. This re-
constructive model is trained on features obtained automatically
from a wide variety of scenarios to improve its generalization
and interpolative powers. We show that the proposed framework
is able to recover partially missing structures and reason over
occlusion with high accuracy, while maintaining a detailed
reconstruction of observed areas. To seamlessly combine this
localized feature information into a single global structure, we
employ a Hilbert Map, recently proposed as a robust and efficient
occupancy mapping technique. Experimental tests are conducted
in large-scale 2D and 3D datasets, and a study on the impact of
various accuracy/speed trade-offs is provided to assess the limits
of the proposed framework.

I. INTRODUCTION

In this day and age, the task of collecting information from
the environment is no longer an issue, as standard sensors are
able to output millions of points in a fraction of a second.
The challenge now is to store and interpret all this data, in
a way that can be exploited by both humans and machines.
One crucial task is the generation of environment models
(i.e. maps), that are able to distinguish between occupied and
unoccupied areas in the 3D space. The knowledge of which
areas can be safely traversed and which would result in a
collision is of key importance for applications ranging from
grasping and object manipulation to obstacle avoidance and
autonomous navigation.

Initial models would simply discretize the space [8, 24],
maintaining an equally-sized grid that stores independent in-
formation about each particular area. This approach, however,
is very memory-intensive and it does not take into account
spatial relationships between cells. OctoMaps (OM) [17] use a
tree-like structure to recursively divide the space as necessary,
which results in a massive decrease in memory requirement
and processing time for grid-like occupancy mapping. Gaus-
sian Process Occupancy Maps (GPOM) [25] and Gaussian
Process Implicit Surfaces (GPIS) [7] both address spatial
dependency by producing a continuous probabilistic function
that maps location to occupancy values. However, they both

scale cubically in relation to the number of training points,
which limits their applicability to larger datasets.

A more recent approach, Hilbert Maps (HM) [26], projects
data points into a higher-dimensional space and uses simple
linear classifiers to produce a continuous probabilistic oc-
cupancy function. The resulting framework both maintains
spatial relationship between inputs (capable of better data
interpolation) and also does not require space discretization
(can be queried at arbitrary resolutions). Over the last year,
significant effort has been made to extend this framework
to address larger datasets [11] and the learning of more
complex features [12]. However, these works are restricted
in the type of features that can be learned from data. In
[11] a squared-exponential kernel is used, which restricts
the resulting features to ellipsoids, while [12] proposes the
addition of a planar surface kernel and devises a methodology
to determine which feature is better suited to each portion of
the environment.

The main contribution of this paper is the development of
a novel methodology that allows the learning of unique and
arbitrarily complex 3D features to represent different structures
in the environment, based on a Bayesian convolutional neural
network (CNN) trained on a series of features extracted from
previously observed maps. Such learning architecture has
already been successfully applied to several areas of computer
vision, i.e. image classification [13], object detection [28]
and semantic segmentation [9]; and is now transitioning into
tridimensional information, as more 3D capturing techniques
[23] and large-scale repositories [36] become available.

In particular, we will be focusing on Convolutional Auto-
Encoders [22] due to their ability to reason over spatial
information to produce latent low-dimensional representations;
and their variational counterpart [6], that infuses Bayesian
probabilistic inference into the Deep Learning framework to
produce a generative model for new structures. To the best of
our knowledge, this is the first time Deep Variational Auto-
Encoders are derived to learn complex environment features
for 3D occupancy mapping, significantly reducing gaps in
the model as a result of occlusions. Within the Hilbert Maps
framework, the benefits of such approach are:
• More detailed reconstructions. The learned features are

not restricted to any single shape, and so can better adapt
to more complex structures.

• Sparser representation. Each feature is able to cover
a larger portion of the environment, meaning that fewer



clusters are necessary for a good reconstruction.
• Better reasoning over data gaps. The model uses its

learned filters to reconstruct unobserved parts of the
environment, thus dealing with partial occlusions and
sensor failure.

II. THEORETICAL BACKGROUND

This section provides a brief overview of the two main
techniques used to create the proposed 3D scene reconstruc-
tion algorithm. The Hilbert Maps framework organizes and
indexes available data, extracting clusters that contain potential
feature information. The Convolutional and Variational Auto-
Encoders are responsible for processing said information,
training a generative model that encodes input data into a low-
dimensional latent feature vector and then decodes it back to
reconstruct different portions of the input space.

A. Hilbert Maps

In [26] a novel framework for scene reconstruction was
proposed, in which real-world complexity is represented in
a linear fashion by projecting spatial coordinates into a high-
dimensional feature vector. This high-dimensional representa-
tion is known as the Hilbert space [31] and, furthermore, if
point evaluation in this space is a continuous linear functional
(i.e. if ||f−g|| is small for functions f and g, then |f(x)−g(x)|
is also small for all x), then it becomes a Reproducing Kernel
Hilbert Space (RKHS) [33].

We assume a training dataset D = {xi, yi}Ni=1, where xi ∈
RD is a point in the D-dimensional space and yi = {−1,+1}
is its corresponding occupancy state. For example, in a laser
scanner the return distances are treated as occupied, while
the discretized space traversed by each beam is treated as
unoccupied. These input points are projected into the RKHS
using a feature function Φ(x), and a classifier is trained in this
higher-dimensional space to produce a discriminative model
p(y|x,w), where w are the parameters of this classifier. Due to
the common wisdom that linear separators are almost always
adequate to separate classes in high-dimensional spaces [19],
a simple classifier can be used for this task.

B. Convolutional Auto-Encoders

The main purpose of unsupervised learning methods is
to extract useful features in unlabeled data, removing input
redundancies while preserving its essential aspects, that are
then used to produce robust and discriminative representations.
Within this context, the encoder-decoder paradigm is arguably
the most commonly used [15], in which the input is first
projected into a lower-dimensional space (encoded) and then
expanded to reproduce the initial data (decoded). Techniques
using this paradigm include: Low-Complexity Coding and
Decoding Machines (LOCOCODE) [16], Auto-Encoders [27],
Energy-Based Models [21] and Restricted Boltzmann Ma-
chines (RBM) [14].

Recently, deep architectures have taken over most learning
tasks [5], providing an unprecedented level of pattern recogni-
tion and data abstraction that is inspired by biological systems.

In particular, convolutional neural networks (CNNs) excel with
visual information [4], because they preserve the input’s spatial
locality and neighborhood information in latent higher-level
feature representations. In contrast to fully connected deep
architectures, that do not scale well to high-dimensional inputs
in terms of computational complexity, the number of free
parameters in a CNN does not depend on input dimensionality,
since they are locally shared in each layer.

The concept of Convolutional Auto-Encoders (CAE) origi-
nated in [22], as a hierarchical unsupervised feature extractor
that uses stochastic gradient descent to learn good CNN
initializations, thus avoiding distinct local minima in highly
non-convex objective functions. It takes an input x ∈ RD

and first maps it to a latent representation h ∈ RD′
using a

deterministic function:

hk = f(x, θk) = σ
(
x ∗ W k + bk

)
, (1)

with parameters θ = {W, b} and activation function σ (the
symbol ∗ denotes convolution). The same process is repeated
for each of the k channels, producing a latent multi-channel
representation H . The resulting “encoded” vector is then used
to reconstruct the input via a reverse mapping:

r = f ′(H, θ′k) = σ

(∑
k∈H

hk ∗ W̃ k + ck

)
, (2)

with parameters θ′ = {W̃ , c} usually constrained such that
W̃ = WT , i.e. the same weights are used for encoding the
input and decoding the latent representation. These parameters
are optimized by minimizing an appropriate cost function over
the training set D = {xi, yi}Ni=1, usually the mean squared
error (MSE) value between input and reconstructed states:

E(θ) =
1

2N

N∑
i=1

||xi − ri||2. (3)

Similarly to standard neural networks, the backpropagation
algorithm is applied to compute the gradient of the error
function with respect to the parameters. For Eq. 3, this can be
easily obtained by convolution operations using the following
formula:

∂E(θ)

∂W k
= x ∗ δhk + hk ∗ δr, (4)

where δh and δr are gradients of the hidden and reconstructed
states, respectively. The weights can then be updated using
standard stochastic gradient descent, in mini-batches com-
posed of training data. Furthermore, several layers can be
stacked to form a deeper hierarchy, with each layer receiving
as input the latent representation from the previous layer (Fig.
1a). A max-pooling layer [32] is often introduced between
convolutional layers to generate translation invariant results, in
which the latent representation is down-sampled by a constant
factor by taking the maximum value over non-overlapping sub-
regions.
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(a) Convolutional Auto-Encoder. (b) Variational Auto-Encoder.

Fig. 1: Visual representations of the Deep Learning architectures used in this paper.

C. Variational Auto-Encoders
Even though commonly classified as of the same type,

the Variational Auto-Encoder (VAE) actually has little to do
with classical auto-encoders [6]. In a nutshell, a VAE aims
to optimize the parameters θ of a function f(z, θ) so that,
when a set of latent variables z is sampled from a probability
distribution P (z), there is a high probability that f(z, θ) will
resemble the input points X = {xi}Ni=1 from our dataset. In
other words, it aims to optimize the probability of X according
to:

P (X) =

∫
f(z, θ)P (z)dz =

∫
P (X|z, θ)P (z)dz. (5)

In this scenario, z are the latent variables that encode input
data into a low-dimensional manifold and f(z, θ) is substituted
by a neural network, as seen in Fig. 1b. Furthermore, we also
assume that P (z) ∼ N (0, I), following the intuition that any
D-dimensional distribution can be generated by taking a set of
D variables that are normally distributed and mapping them
through a sufficiently complicated function, such as f(z, θ).

This posterior probability, however, is intractable, so a
variational approach is taken to provide an analytical approxi-
mation, in the form of a lower bound that can be used for
efficient calculations. We start by defining a new function
Q(z|X), which takes a value of X and returns a distribution
over z values that are likely to produce X back. With some
rearranging [6], here omitted for brevity, the lower bound to
be optimized becomes:

L = logP (X)−KL[Q(z|X)||P (z|X)]

= E[logP (X|z)−KL[Q(z|X)||P (z)]. (6)

In the above equation, on the first line we are attempting
to maximize P (X) while simultaneously minimizing the KL-
divergence KL[Q(z|X)||P (z|X)] (i.e. trying to approximate
the two functions). On the second line it is possible to see some
similarities to standard auto-encoders, since Q essentially
“encodes” X into z, while P is “decoding” z in order to
reconstruct X . This lower bound can then be maximized to
produce the optimal parameters θ that represent our neural
network weights, using standard back-propagation techniques.
Note that, since P (z) follows a unit Gaussian distribution, it
is possible to generate artificial outputs by sampling from this
distribution and then decoding the resulting latent variables.

III. METHODOLOGY

This section describes how the techniques previously men-
tioned can be combined to produce a robust 3D scene recon-
struction framework, capable of learning complex and unique
features for different portions of the environment while proba-
bilistically reasoning over missing information and occlusions.
The proposed framework consists of three steps:
• Automatic Feature Extraction

– Clustering: The input data is clustered to produce
roughly uniformly-spaced points.

– Feature Extraction: The clusters are used to generate
feature vectors for different portions of the input space.

• Reconstructive Model
– Training: Observed feature vectors are used to train a

CVAE model, minimizing the reconstructed error.
– Inference: The trained CVAE model is used to recon-

struct new feature vectors.
• Occupancy Mapping

– Training: Observed reconstructed feature vectors are
used to update the weights of a Hilbert Map.

– Inference: The trained Hilbert Map is used to infer the
occupancy state of new reconstructed feature vectors.

A. Automatic Feature Extraction

We start with an unorganized point cloud D = {X , y} =
{xi, yi}Ni=1 containing the spatial coordinate of each point and
its corresponding occupancy value, as described in Sec. II-A.
This unorganized point cloud is clustered, to produce different
local structures that will serve as features and together describe
the environment as a whole. In [12] an alternative to the
standard k-means++ initialization algorithm [1] was proposed,
that selects the starting cluster seeds for further optimization,
i.e. using the standard k-means algorithm [18]. This technique
was shown to outperform k-means++ in terms of speed
while allowing the automatic determination of the number of
clusters necessary to properly describe the environment, given
a distance threshold.

Here, we build upon the ASK-Means algorithm described
in [12] and propose Quick-Means, an extension that further
improve its computational speed without significantly com-
promising accuracy, as it can be seen in Fig. 2. The key



Algorithm 1 Quick-Means initialization algorithm
Require: point cloud X with N points

radial inner ri and outer ro thresholds
minimum number of points per cluster k
distance function d(., .)

Ensure: clusters C
1: t← N % Number of available points
2: vi ← {0, 1, 2, . . . , N} % Aux. index vector
3: vj ← {0, 1, 2, . . . , N} % Aux. index vector
4: vb ← {0, 0, 0, . . . , 0}Ni=1 % Aux. boolean vector
5: C ← {} % Empty cluster set
6: while t > 0 do
7: x∗ ← X [vi[rand(0, t)]]
8: M← x | d(x∗, x) < ro , ∀x ∈ X [vi[0, 1, . . . , t]]
9: if |M| > k then

10: C ←M
11: end if
12: for m ∈M do
13: i← index of m in X
14: if vb[i] == 0 and d(m, x) < ri then
15: vb[i] = 1 , j ← vj [i]
16: vi[j] = vi[--t]
17: vj [t] = vj [vi[j]] = j
18: end if
19: end for
20: end while

insight is that, for the particular application at hand, we are not
interested in precise cluster locations, but rather at regularly-
placed clusters, that are within a given inner radius threshold ri
given a distance metric d(., .). Furthermore, it accommodates
cluster overlapping by using an outer radius threshold ro > ri,
as a way to increase feature complexity and model structures
from different perspectives. Pseudo-code for the Quick-Means
initialization algorithm can be found in Alg. 1.

Once the M clusters are obtained, the next step is to
encode the information contained in each of them, so it can be
used as input by the reconstructive model. Here this is done
by generating a grid Gm = {xi, yi}di=1 around the cluster
(Fig. 3b), at a certain resolution rG and with dimensionality
d = dr−1G eD. Each coordinate is populated with the most
common occupancy value for data points that fall within that
cell (−1 for unoccupied, 0 for unknown and 1 for occupied)1.
These grid representations act as the kernels k produced by
each extracted cluster, correlating the occupancy values of
unobserved points x∗ to observed data as defined by:

k(x∗, G) =

{
0 if x∗ is outside G
yGj for xG

j closest to x∗ otherwise,
(7)

The feature vector Φ that projects an input point x into the
RKHS (see Eq. 14) is given by a vector containing the kernel
values produced by all extracted clusters G, as shown in Eq. 8.
For computational reasons, we enforce sparsity by calculating
only the kernels related to a subset of the closest clusters and
ignoring the influence of all the others:

1Only integer values for occupancy were used in this work, however the
framework can be trivially modified to reason over occupancy probabilities.

Φ(x,G) =


k(x, G1)
k(x, G2)

...
k(x, GM )

 . (8)

Furthermore, to increase symmetry during the reconstruc-
tion process, the data points in each grid Gm are transformed
to an aligned grid representation Hm (see Eq. 9) by: translation
of Ḡm to a zero-median position; rotation so their sorted eigen-
vectors Vm are, from largest to smallest eigenvalue, aligned
with the coordinate system; and scaling by s so their largest
dimension becomes unitary (Fig. 3c). These transformations
are stored to be used later, in order to recover the original
grid representation from an aligned reconstructed grid:

Hm =
1

s

(
(Gm − Ḡm)Vm

)
. (9)

B. Reconstructive Model

Strictly speaking, the feature vector Φ previously described
could be inserted directly into the Hilbert Maps framework,
combining individual cluster information to produce occu-
pancy values for any input point. However, this naive ap-
proach does not address issues like interpolation, extrapolation,
data gaps, partial occlusion and so forth. Because of that,
we propose the use of a reconstructive model that, as the
name implies, takes these feature vectors and reconstructs the

(a) Initialization time (random values are negligible).

(b) Potential cost

(
argmin

S

k∑
i=1

∑
x∈Si

||x− µi||2
)

during k-means.

Fig. 2: Comparison between different clustering initialization
techniques: Random, k-means++ [1], k-means|| [2], ASK-
Means [12] and the proposed Quick-Means algorithm (average
of 50 runs with different random seeds).



(a) Unorganized point cloud (green dots indi-
cate data from the selected cluster)

(b) Extracted cluster in-
formation

(c) Aligned grid repre-
sentation

(d) A partial observation of the original structure is encoded into a latent
representation and then decoded back.

Fig. 3: 2D feature extraction and reconstruction process.

observed structure based on how it should look like, according
to prior information collected from other similar datasets.

Here, this reconstructive model is a Convolutional Vari-
ational Auto-Encoder (CVAE), that combines the concepts
found in Sec. IIb-c into a single framework. The use of
convolutional layers preserves spatial relationships and greatly
decreases the number training parameters, while variational
approximations are able to encode information into a sig-
nificantly smaller latent representation, as it will be shown
during experiments. Given an aligned reconstructed grid H as
input, the resulting encoded vectors (i.e. the latent variables
z, as introduced in Eq. 5) are generated from the following
probabilistic distribution:

Q(z|H) = N
(
z|µ(H),σ2(H)

)
. (10)

As a simple 2D numerical example, we start with a
32 × 32 × 1 aligned grid representation as shown in Fig. 3c.
During the encoding process, this grid goes through a series
of convolutional layers, each with a kernel size of 5 × 5,
stride of 1, max-pooling of 2 and a ReLU activation function
[10]. The use of max-pooling is important because it both
decreases computational cost and allows the next layers to
extract patterns on higher scales (see Fig. 1a). The number of
channels, on the other hand, increases as more kernels filters
are used to simultaneously process the same input. For the
example at hand, the first layer produces 64 channels and each
one afterwards doubles this value, up to a maximum of 256.

Once this process is complete, the output y of the last
convolutional layer is used to produce the mean and variance

values (see Eq. 10) that compose the latent representation z,
as depicted in Fig. 1b. Here, the generation of these mean and
variance values is defined as:

µ(H) = Fully(y) (11)
σ(H) = Softplus(Fully(y)), (12)

where Fully(.) is a single layer fully connected neural net-
work, in which all inputs contribute to the calculation of
each output, and Softplus(.) is an activation function that
applies the nonlinearity log (1 + exp(.)) to each input, thus
ensuring positive variances. Note that, while y is shared in the
calculation of both mean and variance values, each one has
its own fully connected neural network Fully(.), that is not
shared between variables even though they use the same input
information.

During the decoding process, the latent representation goes
through deconvolutional layers, with similar properties as
their convolutional counter-parts, and is expanded using an
unpooling operation (i.e. the input grid is resized to its
required output dimensions). The resulting reconstructed grid
H ′m has the same size as the original representation, and
contains occupancy estimates according to the CVAE model.
An example of this process can be seen in Fig. 3d, in which
a partial observation is encoded into its latent representation
and then decoded back to produce a reconstruction of the ob-
served structure, including its missing parts. This reconstructed
aligned grid can be transformed back to its original shape G′m
by reversing the stored transformations for that cluster (Eq. 13)
and is then used to produce the reconstructed feature vector
Φ(x,G′), as shown in Eq. 8:

G′m = sV T
mH

′
m + Ḡm. (13)

The CVAE model is trained using mini-batches of re-
constructed aligned feature vectors, obtained from clusters
extracted from the training datasets, which are assumed to
contain similar structures to the ones found in the evaluation
dataset. As explained in Sec. II-C, the reconstruction error (i.e.
similarity between input and output) is minimized alongside
the KL-divergence (i.e. the variational approximation is as
close as possible to the true distribution). To avoid over-fitting,
a dropout [35] value of 0.7 was introduced in the last layer.
Dropout is a form of regularizer in which a percentage of
neurons are randomly ”switched off”, or set to zero.

C. Occupancy Mapping

The reconstructed feature vectors Φ(x,G′) obtained previ-
ously are used to classify the input space, according to the
Hilbert Maps methodology described in Sec. II-A. Here we
employ a Logistic Regression (LR) classifier, in which the
probability of occupancy for a query point x∗ is given by:

p(y∗ = 1|Φ′(x∗),w) =
1

1 + exp (wT Φ′(x∗))
, (14)

where the dependencies on G′ were removed for notation clar-
ity. To optimize the weight parameters w based on information



(a) 2D indoor datasets. (b) 3D outdoor datasets.

Fig. 4: Example of datasets used during training and evaluation in this paper, collected from various Internet sources.

contained in D, we minimize the Regularized Negative Log-
Likelihood (RNLL) function:

RNLL(w) =
N∑
i=1

(
1 + exp

(
−yiwT Φ(xi)

))
+R(w), (15)

in which R(w) is a regularization function, used to prevent
overfitting and promote sparseness in w. An useful property
of Eq. 15 is its suitability for Stochastic Gradient Descent
(SGD) optimization [3], in which information contained in
each point, or batch of points, provides one small step towards
a local minimum, calculated as such:

wt = wt−1 − ηt
δ

δw
RNNL(w), (16)

where η > 0 is the learning rate, usually kept constant or
asymptotically decaying with the number of iterations. The
main benefit of this training methodology is that the entire
dataset never has to be touched at the same time, which might
be infeasible due to sheer size and memory requirements.

IV. EXPERIMENTAL RESULTS

The proposed framework was tested using 2D and 3D
datasets collected from various public repositories available
on the Internet, as depicted in Fig. 4. After one dataset
is selected for evaluation, the other ones are clustered 20
times according to Sec. III-A with different random seeds, to
produce grid representations of observed structures. These grid
representations are then used to train the reconstructive model
described in Sec. III-B (two different models were trained,
one for 2D and another for 3D datasets). Afterwards, the
reconstructed feature vectors are used train a Hilbert Map that
produces occupancy values for any point in the input space,
as depicted in Sec. III-C. Finally, the evaluation dataset is
clustered, its grid representations are reconstructed and the
resulting feature vectors are used to generate the occupancy
values that describe the newly observed environment.

To test the reconstructive powers of the proposed frame-
work, random portions of the evaluation dataset were removed,
as a way to simulate data gaps and partial occlusions. The
objective is to maintain a detailed representation of observed
structures (both occupied and unoccupied) while also using

this available information to reconstruct any gaps. To this end,
the following aspects were evaluated:
• Latent dimension. The effects of changing the number

of latent dimensions in the encoded vector.
• Cluster size. The effects of increasing the average cluster

size, that produces each extracted feature.
• Gap ratio. The effects of changing the relative size of

data gaps, in relation to average cluster size.
As a baseline, we selected a grid size of 64, a latent

dimension of 25/100 for 2D/3D input data, a network depth
of 4 convolutional layers (with kernel sizes 9/7/5/5, max-
pooling of 2 and dropout of 0.8 on the last one) and a gap
ratio of 50% in relation to an average cluster size of 5 meters.
The classification results, for 2D and 3D datasets, can be
respectively found in Tables I and II. For comparison pur-
poses, we provide results obtained using both a Convolutional
Variational Auto-Encoder (CVAE-HM) as the reconstructive
model and a standard Convolutional Auto-Encoder (CAE-
HM). Furthermore, we provide results obtained using the
LARD-HM framework described in [11] for both 2D and 3D
scenarios; and Gaussian Process Occupancy Maps (GPOM)
[25] for 2D datasets and OctoMaps [17] for 3D datasets. The
GPOM framework is known for its ability to reason over
data gaps, while OctoMaps is considered the state-of-the-art
in 3D occupancy mapping. In all cases, an area is considered

TABLE I: Classification results for 2D datasets.

Method Data Observed Data Gaps
Precision Recall Precision Recall

GPOM 90.60% 80.83% 34.61% 29.94%
LARD-HM 80.44% 99.70% 53.58% 51.71%
CAE-HM 77.82% 74.89% 45.22% 42.45%

CVAE-HM 96.64% 94.75% 90.86% 86.29%

TABLE II: Classification results for 3D datasets.

Method Data Observed Data Gaps
Precision Recall Precision Recall

OctoMap 95.59% 94.99% 16.85% 21.94%
LARD-HM 86.08% 96.58% 40.20% 38.62%
CAE-HM 61.92% 64.53% 36.20% 34.26%

CVAE-HM 92.91% 89.68% 86.02% 81.27%



(a) LARD-HM results.

(b) CVAE-HM results.
(c) Zoomed in areas of CVAE-HM results. Black dots indicate occupied areas, light blue dots
indicate unoccupied areas and white dots indicate structure gaps. Blue, red and green shades
respectively indicate unoccupied, occupied and unkonwn areas.

Fig. 5: Visual representation of the 2D scene reconstruction results from Table I. In (a) the LARD-HM framework is used,
and it is clear that it is unable to reconstruct such large-scale features in detail. The same dataset is reconstructed in (b) using
the proposed CVAE-HM framework, and in (c) zoomed in areas are shown, depicting regions in which there were data gaps
(white dots) to be reconstructed.

occupied if its occupancy probability is higher than 60% and
unoccupied if this probability is smaller than 40% (values in
between are considered unknown).

As shown in Tables I and II, the proposed method is able
to achieve a considerable higher reconstruction rate of data
gaps in relation to other techniques, while still providing
competitive rates when dealing with observed information
(see Figs. 5 and 8). Additionally, these results show that the
introduction of a variational component into the Convolutional
Auto-Encoder framework is crucial in achieving satisfactory
reconstruction results, especially with smaller latent dimen-
sions. A comparative study showing the effects of changing
this dimensionality can be found in Fig. 6, where we see
that CAE-HM requires more dimensions to converge and still
achieves worse results both in terms of observed information

Fig. 6: Effects of changing the number of latent dimensions
in CAE-HM and CVAE-HM.

and data gaps. Interestingly, the reconstruction rate of data
gaps starts to decrease after the latent dimensionality reaches a
certain value, a phenomenon we attribute to over-fitting, since
a higher-dimensional vector is better able to fit training data
and thus ignore the presence of information gaps. Fine-tuning
the network topology would probably address this shortcoming
and produce better results, however this was not explored here
and is left for future work.

Another comparative study was done in relation to average
cluster size, that dictates the size of features extracted from the
environment and, by extension, their complexity. Fig. 5a shows
that the standard LARD-HM framework is already unable to
reconstruct environments with an average cluster size of 5m,
while CVAE-HM is able to achieve a much more detailed

Fig. 7: Effects of changing the size of gaps in CVAE-HM for
different average cluster sizes.



Fig. 8: Visual representation of the 3D scene reconstruction results from Table II, using CVAE-HM. Note how the reconstructive
model is able to reason over sparse point clouds to produce a more solid representation of structures, and also extrapolates
available information to areas not covered by sensors. It is also capable to complete objects based on partial views, like cars
(middle left image) and trees (top left and middle right images). Interestingly, it learns to consistently fill in gaps produced by
shadows, completing partially occluded structures (i.e. bottom left and top right images).

representation. In Fig. 7 we show results for CVAE-HM under
different average cluster sizes, both for observed information
and data gaps. As expected, smaller cluster sizes produce
better classification results, since the structures to be learned
are simpler, however they are also able to reconstruct only
smaller gaps. As the average cluster size increases, larger gaps
are able to be reconstructed, however the reconstructive model
itself starts to suffer, because it is unable to learn such complex
features in the first place. As an empirical observation, we
estimate that the gap size should be roughly equal to half the
average cluster size for an optimal reconstruction. Note that
these cluster sizes are much larger than the ones usually found
in the literature for similar tasks, such as object detection and
scene reconstruction [34, 20, 30].

Lastly, in Fig. 8 we can see 3D reconstruction results in
areas that were not deliberately removed from the evaluation
dataset, such as shadows and partial occlusions. Due to the
high abundance of similar objects in the training dataset, and
large enough features to encompass a significant portion of
the structure, the reconstructive model was able to reason over
sparser areas and data gaps to recover the original unobserved
shape. The use of a higher resolution to generate the grid
representations would most likely result in more detailed
reconstructions, however due to the high computational cost
and memory requirements this assumption was not explored

here and is left for future work.

V. CONCLUSION

This paper introduced a novel methodology for 3D occu-
pancy mapping, that utilizes Convolutional Variational Auto-
Encoders to learn a low-dimensional manifold of observed
structures. Once this reconstructive model is trained, new
structures can be encoded and then decoded to produce oc-
cupancy estimates, that are then combined using the Hilbert
Maps framework. While not achieving the level of detail
currently found in other state-of-the-art reconstruction tech-
niques when dealing with observed information, the proposed
methodology is able to consistently reason over data gaps
and partial occlusions with an accuracy significantly higher
than any of the other techniques considered here. Future work
will address neural network over-fitting while focusing on
performance and level of detail, particularly through the use of
continuous convolutions and the sparse representation recently
introduced in [29].
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