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Abstract: In order to deploy robots in previously unseen and unstructured
environments, the robots should have the capacity to learn on their own and
adapt to the changes in the environments. For instance, in mobile robotics, a
robot should be able to learn a map of the environment from data itself without
the intervention of a human to tune the parameters of the model. To this end,
leveraging the latest developments in automatic machine learning (AutoML),
probabilistic programming, and statistical sampling, under the Hilbert mapping
framework which can represent the occupancy of the environment as a continuous
function of locations, we formulate a Bayesian framework to learn all parameters
of the map. Crucially, this way, the robot is capable of learning the optimal shapes
and placement of the kernels in Hilbert maps by merely embedding high-level
human knowledge of the problem by means of prior probability distributions.
Since the proposed framework employs stochastic variational inference, the
model learns tens of thousands of parameters within minutes in both big data and
data-scarce regimes. Experiments conducted on simulated and real-world datasets
in static and dynamic environments indicate the proposed method significantly
outperforms existing stationary occupancy mapping techniques, verifying the
importance of learning the interdependent position-shape relationship of kernels
alongside other model parameters.
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1 Introduction

Modeling the environment a robot operates in is fundamental to safer decision-making such as path
planning. To this end, discerning occupied areas from unoccupied areas of the environment using
sensor measurements such as lidar or sonar is required. Typically, these occupancy states exhibit
highly nonlinear and spatially correlated patterns that cannot be captured with a simple linear clas-
sification model. Therefore, from a machine learning perspective, deep learning models and kernel-
based models can be regarded as the potential candidates for occupancy mapping as they are known
to perform well in nonlinear classification settings. Nonetheless, because it is required to learn the
occupancy level using very few sparse sensor measurements in a reasonable time, kernel methods
have been the de jure choice in recent occupancy mapping [1, 2]. Further, experiments have corrob-
orated their promising applications in 2D, 3D, and spatiotemporal mapping [1, 2, 3, 4], though with
some heuristic parameter choices.

One of the major challenges in employing kernel methods in occupancy mapping is the requirement
of choosing parameters and hyperparameters of the model [5]. In order for mobile robots to maneu-
ver fully autonomously in unknown environments or to interact with humans and other agents, the
robots should have the capability to automatically learn their model parameters from data. Only the
most simple environments contain spatially homogenous features, however this is typically not the
case in real-world mapping - e.g. walls and furniture may contribute to sharp features while open
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Figure 1: Comparison of stationary and nonstationary squared-exponential kernels, exp(—||x — %||3/2{?) with
bivariate Gaussian distributions X hinged on the environment with lengthscales /, and their ability to represent
sharp spatial changes. Note that both examples have the same number of kernels, however in the non-stationary
case the kernels have different positions and lengthscales to account for abrupt changes in the training data.

spaces and large hills may contribute to spatially smooth features. To better understand the sig-
nificance of representing nonstationarity in terms of kernels, first consider the squared-exponential
kernel which is parametrized with lengthscale and position hyperparameters. As seen in Figure
1 with large lengthscales it is possible to capture smoother changes across the space, while small
lengthscales allow one to capture sharp changes in the space. Hyperparameter optimization is criti-
cal for almost all machine learning methods and the best values are almost always dependent on the
dataset. Often, a single best lengthscale is chosen that performs, on average, the best for the entire
dataset. There is also a computational constraint of the modeling method that restricts one from
placing a large number of kernels around the space being mapped - this introduces the problem of
where one should place kernels. In our contribution, we address both problems - where to place ker-
nels and what lengthscales they should have. These autodidactic and model adaptation paradigms
are vital for a robot to achieve full autonomy.

Another important aspect that should be taken into account when designing robot models is the
uncertainty inherent to all system levels—from sensor and actuator imperfections to model mis-
specifications. To represent this uncertainty, probabilistic formulations [6, 7] have been widely used
in robotic applications such as simultaneous localization and mapping [8], occupancy grid mapping
[9], and human-robot interaction [10, 11, 12]. Although these models make use of the Bayes theorem
to compute inverse probabilities assuming the conjugacy of prior-posterior probability distribution
pairs [13], they do not leverage the fully Bayesian treatment of introducing probability distributions
over all parameters to account for diverse sources of uncertainty. In addition to capturing uncer-
tainty, Bayesian models are known to be suitable for small data settings [14]. Another incentive to
use Bayesian models in robotics is that they provide an interface to incorporate high-level human
knowledge about the system into the model through prior probability distributions. Irrespective of
the attractive proprieties of Bayesian formulations, considering complex Bayesian treatments to cap-
ture all levels of uncertainties has been hindered in many robotics applications because, i) designing
tractable Bayesian models require tedious mathematical derivations which require subject expertise,
and ii) many models cannot scale to run in real-world robotics applications. However, recent devel-
opments in AutoML techniques in machine learning can circumvent some of these issues, making
them propitious for robotics applications such as kernelized continuous occupancy mapping.

In this paper, we use stochastic gradient descent with the reparameterization trick [15] to solve a
challenging robot learning problem of determining parameters for Hilbert maps. Former Hilbert
mapping techniques, including the Bayesian version, have used human designed kernel parame-
ters. As illustrated in Figure 2, the most important parameters which include hinge positions and
lengthscales can be learned. The contributions of the paper are:

1. Proposing a theoretical framework that works well in practice to learn all parameters in
Hilbert maps in both static and dynamic environments,

2. Learning kernels to account for non-stationary and nonlinear patterns,
3. Proposing the use of low-discrepancy sampling in robotic mapping,

4. Demonstrating the importance of using complex Bayesian formulations for uncertainty rep-
resentation in robotics and learning thousands of parameters in both small and bigdata set-
tings without laborious mathematical derivations, and

5. A thorough analysis of factors that affects Hilbert mapping.
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Figure 2: (a) A 50 x 300 m section of a simulated environment with obstacles in yellow. A robot shown as a
black arrow has a lidar with beams shown in blue and the laser hit points in red. (b) The robot moves around
and collects data. Red points are laser hit points and blue points are samples taken from lidar beams between
the robot and laser hit points (c) The occupancy probability map. Red indicates occupied space, blue indicates
free space, and colors in-between indicates the uncertainty of occupancy. (d) The map is built based on a set
of squared-exponential kernels. The mean of the initial bivariate Gaussians is shown here—Gaussians are in
a grid. (e) The proposed algorithm can learn both kernel parameters ! and positions X alongside other model
parameters. Both the color and the size of the marker indicates the size of the learned lengthscales. For instance,
larger lengthscales are shown in a bigger marker size and in red.

2 Background

2.1 Hilbert maps

With the advancement of depth sensors such as lidar and sonar, occupancy grid maps (OGM) de-
veloped in 1980s [16] became a popular choice for representing the environment. In OGMs, the
world is divided into a fixed size grid with a prespecified resolution, after which, a Bayes filter is
applied to sequentially update the occupancy of grid cells as new depth information is received from
the sensors. In order to capture spatial correlations, that are otherwise disregarded in OGMs due to
independence assumptions among grid cells, O’Callaghan et al. [17] proposed Gaussian process oc-
cupancy maps (GPOMs) where the spatial correlation is captured using a kernel function. However,
vanilla Gaussian process-based methods have O(N?) runtime complexity for N data points in both
learning and prediction, and hence they are not efficient enough to map real-world environments.
The computational complexity grows over time even in faster approximations [18]. As an alterna-
tive, Hilbert maps (HMs), another kernelized technique, was proposed [1]. Unlike GPOMs, HMs
are parametric techniques and therefore scalable to large datasets.

In Hilbert maps, the map is learned on a reproducing kernel Hilbert space (RKHS) where kernel
functions are used to characterize spatial relationships. In the context of HMs, a kernel k(x,X) :
X x X — Ris a function that measures the similarity between two multidimensional inputs x,
%X € X C R2. In 2D HMs, the pairwise similarities between the elements of the two sets of
points {x,, € R} | and {x,,, € R?}M_, are computed. Here, x are longitude-latitude locations
of either free or occupied y € {0,1} = {free, occupied} data points sampled from lidar beams
and x are points hinged on pre-defined locations of the space. A squared-exponential (SE) kernel
k(Xp, Xm; 1) = exp ( — [|[xn — X ||3/21?) with a heuristically determined lengthscale [ is used to
compute the the feature vector ¢(x,;1) = (k(Xp,X1;1), k(Xpn, %25 1), oo k(Xp, Xpr51)) € RMX1
for all data points {x,,}2_,. In this sense, {(xy,yn)}3_; is the dataset and {I, {X,,}}7_, } is the
pre-defined parameter set. Although random Fourier features or Nystrom features can also be used
in occupancy mapping, hinge features are not only intuitive but also have shown better performance
in online occupancy mapping [1] and other similar problems [19, 20].

Once the feature vector is evaluated, it passes through a sigmoidal function to estimate the occupancy
level § = p(y|x., w) = 1/(1+exp(w ' ¢(x,,;1))) of a query point in the space x., given the weights
w € RMX1 Ag this query point can be any longitude-latitude pair, as opposed to OGMs, HMs can
produce maps with arbitrary resolution at prediction time. In order to learn weights, the loss function



SN log(14 exp(ynw T ®(x,;1,%))) + A1 [|W]|2 + Ao||wl|1 with pre-determined penalty terms A,
and )\, is minimized. This becomes challenging as a human expert requires to choose the parameters
l, X, A1, and A9. Although Senanayake and Ramos [5] attempted to alleviate this issue to a certain
extent by getting rid of A\; and A, which mainly controls over-fitting, the lengthscales of the kernel
[ and where to place them x were still prefixed values. On the other hand, although the model in [5]
works well if [ and x are chosen appropriately, the model is based on a hand-derived approximate
lower bound which is not amenable to further modifications such as automatically learning these
parameters. As an attempt to reduce the number of unnecessary hinged points in 3D point clouds
[21] placed kernels using a clustering technique in a preprocessing step.

2.2 Kernel learning

Kernels methods are used in robotics especially when the objective is to learn nonlinear patterns
with a small amount of data [22, 23, 19, 24]. Although only SE kernels with fixed lengthscales
are used in robotic mapping [1, 2, 5], different kernel learning techniques have been previously
discussed in machine learning, especially in the Gaussian process literature. The selection of kernels
is typically done through expert human knowledge [25], a model selection criteria such as Bayesian
information criteria [26], or expensive optimization procedures [27]. Alternatively, it is possible
to combine kernels as a sum or a product of kernels [25] or as representing them as a spectral
mixture in the frequency domain [28]. However, unlike in Gaussian process where optimizing the
hyperparameters is well-studied and readily available through the log marginal likelihood, directly
learning parameters online in a classification setting is not straightforward in HMs.

3 Nonstationary kernels for Hilbert mapping
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It is known that kernel methods are well suited for occupancy mapping, if parameters are appropri-
ately set [1, 2]. In this section, we propose novel techniques for mapping unstructured environments
without a human explicitly providing hyper-parameters. Firstly, we propose different positioning
techniques for hinging kernels in Section 3.1. Then, we discuss the importance of nonstationary
learning [29] in occupancy mapping. That is, rather than having a single lengthscale for all kernels
as in [1, 5], kernels should have different parameters, depending on where they are placed in the
space. For instance, with regards to SE kernels, kernels should have smaller lengthscales close to
walls in order to capture sharp transitions from occupied to unoccupied. Similarly, bigger length-
scales are expected in largely unoccupied or unobserved areas. With the motivation from Section 3.1,
we propose a technique to simultaneously learn the position and kernel parameters in Section 3.2.

'The gamma distribution is defined as G(z; o, 8) := %x“‘le_ﬁ’” where D(@) = [ 2% le *dz is
the gamma function. a > 0 is the shape parameter and 8 > 0 is the rate parameter. In literature, the scale
parameter is sometimes defined as the inverse of the rate parameter instead of the rate parameter.

>The log-normal distribution £\ is obtained by transforming a standard normal variable 2’ = exp(u+0cz).



3.1 Various initializations for hinged kernels

Rather than initializing hinge points randomly in the space, it is possible to place them based on
quasi-random locations in order to guarantee a more uniform spread of kernels in the space. This is
done by using a low-discrepancy sequence [30]. Some of the commonly used Quasi-Monte Carlo
(QMC) sampling techniques include Halton, generalized Halton, and Sobol sequences [30, 31].

SE kernels with a fixed lengthscale have been the de facto choice in Hilbert mapping [1, 2, 32, 5].
We propose to hinge multiple kernels with varying properties on every hinge location X, rather than
hinging a single kernel. For instance, it is possible to hinge a set of SE kernels {k(-,%,,; 1)},
with R different lengthscales [,.. More broadly, these can also be a set of R different kernel types
{ky (-, %m; 0,) }E_, with 0, parameters corresponding to the the 7" kernel. In addition to the hack-
neyed SE kernels, this pool of kernels can consist of Matérn kernels, rational quadratic kernels, etc.
A spectral mixture of kernels [33] is also another choice.

Adding hinged kernels increases the dimensionality of the feature vector by R times. For @, feature
vectors individually computed on M hinge points as in Section 2.1, define the aggregated feature
vector @y, = ||, @, € RY*FM with || indicating vector concatenation. The classification model
is § = p(y|x., ws) = 1/(1 + exp(—wy ®x)) with wy € REM*L This is equivalent to joining R
individual sets of model weights w,. € RM*1 as S w T ®, before the sigmoidal transformation.

3.2 Automorphing kernels for Hilbert mapping

Although the aggregation method proposed in Section 3.1 partially accounts for nonstationarity, it
requires a set of predefined parameters. As with other continuous mapping techniques, the method
cannot learn where to place kernels. However, for a robot to adapt to changes in unstructured
environments, it is crucial to take the human out of the loop of parameter tuning. In the following
sections, without loss of generality to other kernels, we explain using SE kernels to solve these
issues.

3.2.1 Model specification

In this section, as the main contribution of this paper, we propose a principled approach to provide
two traits of adaptation to kernels in Hilbert maps: plasticity and mobility. That is, both the shape
l of the kernel and its locations X can be learned alongside feature weights w under the proposed
framework. Further, as shown in Figure 2e, rather than considering a single lengthscale as in previ-
ous work [5] or a small set of lengthscales as in Section 3.1, the new technique can not only learn
any lengthscale in R, but also the kernels associated with each hinge location has its own local
lengthscale. These individual lengthscales {/,, }}/_, essentially model the nonstationary behavior
and can easily acclimatize to local changes in the environment.

Since observed occupancy values are always binary and they are independent of each other, we
assume the likelihood follows a Bernoulli distribution p(y|x,w,1,X) where log(8/(1 — 0))) =
w ' ®(x;1,%). Note that this is equivalent to logistic regression [13]. The prior distributions over
weights are defined as Gaussian distributions. Since the hinge locations can be anywhere in the
space, they are also defined as Normal distributions. As shown in Figure 3, kernel functions are
now implicitly evaluated between datapoints point and hinge distributions, naturally accounting for
uncertainty. A meaningful lengthscale can only be positive and hence the prior distribution over
inverse squared-lengthscales | = 1/2/? is defined as a gamma distribution. The first three rows
of Table 1 provides a summary of all variables. Here, for computational efficiency we assume all
variables are independent. As these prior distributions were empirically sufficient for modeling
occupancy, we do not complicate the model with hyper-prior distributions.

Our objective is to learn the posterior distribution: parameters conditioned on data. However, be-
cause of the Bernoulli likelihood, the posterior is intractable and hence is approximated using an-
other distribution ¢. Indicating longitude and latitude with lon and lat, respectively, the basic formu-
lation with mean-field variational approximation is given in Figure 3 and the following equation,

1T a(wm)a(@ha(@)eZm) = q(w,1,%) ~ p(w,1,%[x,y) o p(w)p()p(X) p(y[x, w,1,%) .
m—1 ——

variational posterior priors likelihood
distribution

factorized variational distribution



3.2.2 Model learning

The posterior distribution defined in Section 3.2.1 is intractable due to the Bernoulli likelihood.
Since distributions over lengthscales and positions are introduced in addition to distributions over
weights, obtaining a maximum a posteriori (MAP) estimation is not feasible even with the lower
bound derived in [34]. As occupancy mapping is a very high dimensional problem, obtaining the
posterior using Markov chain Monte Carlo (McMC) techniques is costly [13]. As an alternative,
we use variational inference (VI) with the reparameterization trick [15]. Although there are other
alternatives such as VI with stochastic search [35] and Hamiltonian Monte-Carlo [36], we used
the well-established method [15] as it can easily perform stochastic gradient descent (SGD) with
minibatches. Rather than deriving the lower-bound for the specific case, as an AutoML technique,
we made use of probabilistic programming [37] to minimize the Kullback-Leibler (KL) divergence
between the variational distribution and posterior KIL(¢||p). For this reason, the proposed model is
easily amenable for extensions. The choice of distributions is detailed in Table 1. To keep variances
of variational distributions non-negative a softplus transformation was applied.

4 Experiments and discussions

We conducted a series of experiments on four different datasets given in Table 2. These datasets
contain both static and dynamic environments. As with [5, 18], our model will estimate the av-
erage long-term occupancy which is different to mapping short-term occupancy [3] or remov-
ing dynamics to build a static occupancy map [38, 39]. When demonstrating basic concepts
and observations, a portion of dataset 1 is used as it is simple and easy to visualize. We
used TensorFlow with the Edward library [40] to program. Demonstrations can be found at
github.com/MushroomHunting/automorphing-kernels.

Table 2: Description of the datasets.

Dataset | Real | Dynamic | Description

1 X X A 600 x 300m? area [5]. This is a simple but large environment.

2 v X Intel lab dataset: a complex indoor environment.

3 X v Vehicles move in two directions and the robot sits in the middle [5].
4 v v Lidar dataset in a busy intersection [5].

4.1 Experiment 1: Effect of kernel aggregation

As the first experiment, to verify that capturing non-stationarity is important, we hinged three SE
kernels with [ = 5,1,0.1 on fixed locations. We observe that by changing the lengthscale of all
kernels we can observe differently learned weights - this indicates the requirement of learning kernel
parameters depending on where they are in the environment. (See supplementary for experimental
results).

4.2 Experiment 2: Effect of hinging techniques

In order to demonstrate the effect of positioning kernels, we learn the map for a fixed lengthscale
chosen from five-fold cross-validation that minimizes AUC. We consider positioning kernels on a
regular grid, MC samples, and three QMC sampling techniques—Halton, generalized Halton, and
Sobol. The number of hinge kernels was set to 222. As shown in the supplementary materials, unlike
the QMC techniques, MC sampling tend to make clusters making the Hilbert maps less accurate.
Therefore, if kernel positions are not learned, they should be placed either quasi-randomly or on a
regular grid.

For the intel dataset, as shown in Figure 8, we do further analysis to see the effect of the number of
samples trade off. Interestingly, the time increases almost linearly with the number of features while
the accuracy does not significantly improve after a certain number of features.

4.3 Experiment 3: Effect of learning parameters

This experiment was designed to validate the main contribution of the method—Iearning length-
scales and hinge locations. The learned environments for different datasets are shown in Figures 5
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and 6 as well as in supplementary materials. To understand the full effect of the proposed model it is
not enough to look at the predicted occupancy map—we must consider the underlying distributions.
Figure 7 provides a visual map of the means and variances of a learned model’s variational poste-
riors. Accounting for a large part of the upper and lower parts of the map, the position variance in
Figure 7b shows that in areas of dense laser scans where no walls exist, a larger but uniform variance
for each spatial dimension is learned. For the areas where the laser scanner has detected walls one
observes a stark contrast exhibited by the smaller spatial variances. In the walled area spanning the
middle of the map the learned variances in the latitudinal direction are stretched out further relative
to the longitudinal direction reflecting the narrow corridor-like shape of the wall. Concerning now
the lengthscale mean and variance in Figure 7c we can observe the most significant effect in terms of
the learned posteriors. At the top and the bottom open areas the largest lengthscales are observed sig-
nifying a minimal complexity of occupancy. Paralleling the learned position variances, the learned
lengthscale means are clustered around either areas of detail or areas of uncertain occupancy. This
effect is repeated in the lengthscale variance.

The kernel weights means and variances are depicted in Figure 7d where one can see the high-
est weights appear around areas associated with the smallest position and lengthscale variances.
Contrastingly, the most negative weights appear in regions of highly confident predicted empty oc-
cupancy. The weights closest to zero occur in areas of the map the robot has no visual perception
and these constitute the insides of walls. The effect of the weight means is reflected in the weight
variance where areas of high observability, which include open spaces and walls, have a low un-
certainty in their estimates. Areas of low observability, i.e. inner parts of walls, have extremely
high variances. This underlying analysis of the learned posterior distributions not only substantiates
the motivation for spatially adaptive kernel learning, but also gives an explainable and intuitive un-
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Table 3: Experiment 3: Losses on all real datasets. The higher the area under curve (AUC) or the lower the
mean negative log loss (MNLL), the better the model is.

Method Dataset 1 Dataset 2 Dataset 3 Dataset 4
AUC \ MNLL | AUC \ MNLL || AUC \ MNLL || AUC \ MNLL
ABHM 0.999 | 0.015 | 0.994 | 0.093 | 0.993 | 0.175 | 0.889 | 0.477
BHM 1.000 | 0.176 0.921 | 0.362 0.990 | 0.280 0.825 | 0.570
HM 0.992 | 0.226 | 0.938 | 0.666 | 0.920 | 0.903 0.778 | 0.677
VSDGPOM || 0.801 | 0.372 0.794 | 0.530 0.990 | 0.233 0.788 | 0.886
DOGM 0.792 | 0.593 0.901 | 0.744 || 0.980 | 0.495 0.779 | 3.449
0.6
1.0 —— learned X
g 091 041 — fixed % % 40 A
< g £
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Feature count Feature count Featur(e)count
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Figure 8: Performance vs. number of features for dataset 2. The blue lines show performance for fixed hinge
positions while the red lines show the full ABHM model.

derstanding of what the model has learned which is often critically important for robotic tasks that
interact with real-world environments.

Using all four datasets, the area under curve (AUC) and mean negative log loss (MNLL) were cal-
culated. As reported in Table 3, these metrics were also calculated for occupancy grid maps with
dynamic updates (DOGM), variational sparse dynamic Gaussian process occupancy maps (VSDG-
POM) [18], HMs, and Bayesian Hilbert Maps with sequential updates (BHM). The best lengthscales
for previous Hilbert mapping techniques were determined using five-fold cross validation. Even
when compared with hand-crafted features, ABHM outperforms. This is because it models nonsta-
tionarity and can capture subtle changes. For dataset 1 which has straight boundaries, the AUC value
of both BHM and ABHM are comparable. However, ABHM outperforms in complex datasets such
as in dataset 2 and dynamic environments such as in datasets 3 and 4. This is because only ABHMs
can adjust the position and shape of kernels to locally adapt to environments.

To further understand the relationship between the performance and number of hinge points, we
analyzed the speed time and accuracy for dataset 2. We did this by, 1) learning both lengthscales
and position, and 2) learning only the lengthscale keeping the kernels hinged on a grid. As shown in
Figure 8, to achieve the same level of accuracy, only a smaller number of features is required when
learning both the lengthscale and position.

Runtime: We conducted all experiments on a computer with a GTX1080 Ti 11 GB. For datasets 1
and 2, on average it takes around 10 minutes to learn all parameters. Note that this is to learn upwards
of 57,600 parameters (8 parameters per hinge with more than 7200 hinges) and 300,000 data points.
In contrast, [5] has an inevitable computational complexity O(M?) while the proposed method uses
stochastic gradient descent (SGD). Although analyzing the theoretical asymptotic complexity is not
straightforward, it linearly increases with M and N empirically. In ABHM, we take the advantage
of SGD to scalable for large datasets.

5 Conclusion

With the intention of building continuous occupancy maps without the human intervention, we de-
vised methods to learn all parameters of the Hilbert maps. We also demonstrated the use of the latest
AutoML techniques to learn complex models without relying on tedious mathematical derivations.
Since kernel methods have also been successfully used in a variety of nonlinear path planning meth-
ods [22, 41, 32] we plan to extend these ideas to path planning so that mapping and path planning
can be performed simultaneously in real-world in an end-to-end fashion under one framework.
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1 Experiment 1: Effect of kernel aggregation
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Figure 1: These images are based on the dataset in Figure 2a from main paper. (a) Kernel aggregation in
experiment 1 (b) Positioning kernels in HMs with fixed position and lengthscales for different hinging schemes.

2 Experiment 3: Effect of learning parameters

Table 1: Example of model distribution parametrization for datasetl. Xin;c refers to some arbitrary hinge point
initialization.

Variable | Distributions
Prior distributions:
Win N (ftr, = 0.0, 02, = 900)
I G(am = 1.05, B, = 12.0) !
Ko N (fiXinie, 2 = 10.0)
Variational distributions:
qWom N(u%) = 0.0,072,,@) = 120)
g | LN (a8 =1.0,8%) = -3)2
X | N9 = i, 529 = 0.001)

Table 1 Using a clipped part of video 1, how kernels are moved with the number of iterations in the
optimization is shown in the attached video (after 55 seconds). The final lengthscales along with the
predicted occupancy for datasets 1, 2, 3, and 4 are shown in Figure 2.

'The gamma distribution is defined as G(z; o, §) := %:r"—le_m where I'(a) := [ 2% 'e *dz is
the gamma function. o > 0 shape parameter and 5 > 0 rate parameter. In literature, the scale parameter is
sometimes defined as the inverse of the rate parameter instead of the rate parameter.

’The log-normal distribution £\ is obtained by transforming a standard normal variable 2’ = exp(p+oz)

2nd Conference on Robot Learning (CoRL 2018), Zrich, Switzerland.
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Figure 2: Left: laser scans, middle: predicted occupancy, right: learned kernel positions and lengthscales



