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Abstract: Hilbert mapping is an efficient technique for building continuous
occupancy maps from depth sensors such as LiDAR in static environments.
However, to make the map adaptable to dynamic environments, its parameters
need to be learned automatically. In this paper, we take a variational Bayesian
approach to this problem, thus eliminating the regularization term typically ad-
justed heuristically. We extend the proposed model to learn long-term occupancy
maps in dynamic environments in a sequential fashion, demonstrating the power
of kernel methods to capture abstract nonlinear patterns and Bayesian learning
to construct sophisticated models. Experiments conducted in environments
with moving vehicles show that the proposed approach has a significant speed
improvement over the state-of-the-art techniques and maintain a similar or
better accuracy. We also discuss the robustness against occlusions and various
theoretical and empirical aspects of building long-term dynamic occupancy maps.

Keywords: Robots, RKHS, Spatiotemporal, Dynamic environments, SLAM

1 Introduction

Distinguishing occupied areas from unoccupied areas in unseen and unstructured environments is
central to path planning in autonomous vehicles. This task becomes even more challenging in the
presence of dynamic objects such as moving vehicles. Almost all fully autonomous vehicles —
commercial driverless cars such as Uber, Google, etc. and trucks used in the mining industry [1]—
are equipped with depth sensors such as LiDAR as they require to build occupancy maps from sparse
range measurements.

Typically, occupancy grid maps have been used for modeling the occupancy state of the environment
by dividing the world into a fixed-sized grid and then applying a Bayes filter to cells individually [2].
In order to alleviate its limitations such as, 1) the requirement of predefining a cell size, 2) strong
assumptions of independence between nearby cells, Gaussian process occupancy maps (GPOMs)
[3, 4] have been developed. The covariance function of the Gaussian process naturally considers
neighborhood information making GPOMs robust against occlusions.

As opposed to occupancy grid maps, GPOMs model the occupancy as a function which can be easily
queried to evaluate the occupancy probability of any point in the environment. Such probabilistic
frameworks can be effectively used for path planning with safety in mind [5, 6], and perform simul-
taneous mapping and planing [7] under one framework thanks to kernelization [8]. Nevertheless,
being a non-parametric model, the computational complexity of GPOM is O(N?3) for N data points
which unmanageably grows as more laser scans are obtained over time. Although [9] uses stochastic
variational inference to make GPOMs faster, the computational time still increases with N.

Bringing all advantages of GPOMs, [10] proposed Hilbert maps (HMs)—a parametric model based
on another kernel method. It takes the form of a kernelized logistic regression classifier which
attempts to minimize the regularized negative log-likelihood using stochastic gradient descent to
estimate its parameters. Although it has been extended for static 3D environments [11, 12] as well
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Figure 1: The long-term occupancy map produced using the proposed algorithm after observing the field for
several minutes. The robot indicated by the black arrow head resides at the middle of the two roads. Its field of
view is shown in blue laser beams with red laser hit points, when there are no moving vehicles. Static objects
such as buildings and parked vehicles are shown in yellow and the traffic flow in green arrows. Vehicles moving
in the upward direction are more frequent than that of downward. Therefore, after several laser observations, the
occupancy probability of the left road shown in (b) is higher than that of the right road. Always occupied areas
are indicated by +1 while unoccupied areas are indicated by —1. The occupancy level of the unseen outlying
areas is almost 0, i.e. uncertain. (c) is the tristate BHM map showing occupied, unoccupied, and undecidable
was obtained by rounding the occupancy levels to the nearest integers€ {—1,0,+1}. Since the model captures
neighborhood relationships, areas around (—50, 15), (—50, 35) and (60, 20) are correctly predicted, regardless
of occlusions due to the three parked vehicles.

as to predict short-term dynamics [13], it cannot be directly used for mapping long-term dynamics—
areas which are generally occupied when observed over a period of time, as in the model illustrated
by the example in Figure 1. This is because it internally uses a Gaussian process regression model
with a squared-exponential kernel in the time domain.

As another limitation of Hilbert maps, its objective function contains a regularization term which
needs to be pre-fixed. The regularization parameters are used to prevent over-fitting and maintain a
consistent sparsity in the map, especially in areas where no data are available. This will be further
discussed in Section 2.3. Making a multitude of significant improvements to make static Hilbert
maps readily usable in complex environments, this paper presents the following contributions;

1. a variational Bayesian formulation to Hilbert maps, eliminating crucial regularization pa-
rameter tuning;

2. asequential learning framework that does not store observed data, and;

3. along-term spatiotemporal model with an almost fixed time-memory budget.

To the best of our knowledge, previous methods that concern about dynamics of the environment
when building occupancy maps are either formulated for extracting deterministic patterns [14, 15,
16, 17, 18] or eliminating dynamic objects from the environment in order to build robust static maps
[19, 20]. In contrast, as in [9], our method focuses on developing long-term dynamic maps which
can later be used for path planning. However, unlike [9], our method does not require previous data
making the learning process significantly faster as well as being memory frugal.

We start the following section by introducing Hilbert maps, and then, in Section 3, we propose
its “fully Bayesian” treatment (named BHM) which requires data to be accumulated over time to
robustly build a long-term model. Then, in Section 4 we run it sequentially (named SBHM) without
requiring old data to update the model. Experiments and discussions are given in Section 6.

2 Hilbert Maps

The Hilbert maps framework [10] is developed for building continuous occupancy maps in static
environments. It makes use of regularized logistic regression to model occupied and unoccupied
states, and optimizes its model parameters using stochastic gradient descent (SGD).

2.1 Data

It is assumed that data points are collected from a line-of-sight depth sensor such as LiDAR or sonar.
The end point of each beam, when it hits an obstacle, is labeled as an occupied point y = 1, and



samples drawn from a uniform distribution with a support between the sensor and the end point are
labeled as unoccupied points y = —1. The spatial locations, latitude and longitude, corresponding to
each y are denoted by x € R%. N such input-output pairs {x,,, ¥, }\_; will be used for supervised
learning.

2.2 The Hilbert maps model

Hilbert maps are based on an approximate kernel defined by the inner product kern(x,X) =
®(x) T ®(X) with features ®(-). Although three different features are suggested in [10], our dis-
cussion will be based on hinged features defined by,

k(x,X) :exp(—7||x—5i||2), (D

as they have a physical meaning and, as also concluded by authors, they experimentally outperform
other features. Here, v is the bandwidth which controls the width of the Gaussian-shaped curve, and
X is a spatially fixed point in the environment. Having D such points (the higher, the richer) hinged
in different locations of the environment, the feature vector can be computed by,

d(x) = (l,k(x, X1), k(x,X2), ...,k‘(x,ip)), )
The probability that a point in the environment is not-occupied is defined by the sigmoid function,
-1
Ply=-1|x,w) = (1 + exp (WTq)(X))) =o(- WT(I)(X)). 3)

The parameters w are learned by minimizing the regularized negative log-likelihood,

N
RNLL = Zlog (1 + exp ( — inTQ(X)D + <a1||w||1 + a2||w||§), 4)
i=1

Regularization

with a1 and o regularization parameters.

2.3 Importance of regularization

The regularization term in a0 | | 100
(4) is commonly known as
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which can be thought as
a convex combination of
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As 1llu.strated in Figure 2, Figure 2: The white arrows show the position of the robot while the white arcs
the 'Hllbert maps  model  ghou the range the robot can see. (a) Hilbert maps “without regularization”
heavily depends on the predict areas where there are no data as unoccupied—majority dark blue, (b)
regularization and requires Bayesian Hilbert maps which does not require a regularization term intrinsi-
careful tuning. cally identify such areas as unknown—green.

3 Bayesian Hilbert Maps (BHMs)

3.1 The model

As with HMs, data are collected as discussed in Section 2.1 and features ®(x) are computed using
(2). However, unlike HMs, similar to our workshop paper [21], we will take a Bayesian approach,
effectively eliminating the requirement of regularization terms, rather than minimizing the regular-
ized negative log-likelihood. As an added advantage of Bayesian learning, the proposed approach
only requires a little amount of data to learn the large parameter vector w. However, it is not possi-
ble to obtain an analytical solution for the posterior of the Bayesian model because of the sigmoid



likelihood, and hence, as indicated by (5), the posterior is approximated by another distribution Q
with parameters w and «. Each of its terms will be elaborated in the following sections.

likelihood prior hyper-prior
P(Y\X7W)><P( @) x_P(a)

Q(w,a) ® P(w,alx,y) = (5)
approx. posterior
posterior mar&,mal likelihood

3.1.1 The likelihood

As discussed in Section 2.1, LiIDAR data points are independent from each other and hence the data
likelihood can be written as, P(y|x,w) = [[_, P(yn|xn, W) = [[’_, o(yuw T ®(x,)). This
sigmoid likelihood does not have a conjugate prior. Therefore, it will be locally approximated by
the exponential of a quadratic form in such a way a standard prior distribution can be used to make
the posterior evaluable using variational inference [22].

Theorem 1 [23] A sigmoid likelihood o (yr) := P(y|r) can be lower bounded by,

7o) = ol exp 57 - 5 (o0 - 3) (2 = ¢7)] ©

with & as a local parameter used to linearize the function using the Taylor expansion.

Letting 7 = w ' ®(x) in Theorem 1 provides a lower bound for the data likelihood defined in (3.1.1).
¢ is a parameter that needs to be learned from data.

3.1.2 The prior and posterior distributions

Rather than having a pre-defined hyperparameter « in the prior P(w|a), the objective is to learn it
from data itself. The prior is a Gaussian P(w|a) = N(w|0, X,,) with X, being a diagonal matrix
with diagonal elements o ~1 created from a hyperparameter vector a. In order to learn ar, a Gamma

hyper-prior P(ct) = []% 4—1 I'(alao, bo) is used, where constants ag, by are shape parameter and
scale parameter, respectively.

Considering the mean-field approximation [22], the posterior distribution is factorized as Q(w, o) =

Q(w)Q(ax), where Q(w) = N(w|u,X) and Q(a) = I'(etfa, b) = HdD:1 T'(agla,bg). In the
learning phase, it is required to learn parameters p, 3, a, and b to accurately model occupancy
states.

3.2 Learning parameters

The marginal likelihood, P(y|x) = [ [ P(y|x, w)P(w]|a)P(a)dwda is intractable, and hence, in
variational inference, the log-marginal likelihood is decomposed as,

InP(ylx) = L(Q(w, @) ) + KL(Q(W, o) [ P(w, alx,y) ), @)
N—_—— N—_—— ——— N ——
marginal approx. approx. posterior
likelihood posterior posterior
where,
(W, o, y) // P(w,aly)
w, Q) dwda, and KL = — w,a)ln| ——= |dwda,
= | [ <MW® QO Q)
®)

are the lower bound and Kullback-Leibler (KL) divergence, respectively. Compared to Markov chain
Monte Carlo (MCMC) techniques, variational inference have shown to be well suitable for learning
high dimensional models with large datasets within a short period of time [24, 25]. Typically, in
variational inference, the objective is to find w and « that minimize the distance, i.e. KL-divergence,
between the approximate posterior and true posterior. However, since computing KL-divergence
requires access to the true posterior which we do not have, instead of minimizing the KL term,



the lower bound £ is maximized, considering the fact that marginal likelihood does not depend on
parameters.

Unlike in the generic setting, £ is also not explicitly computable here because of the sigmoid
likelihood. Therefore, combining the bound (6) with the decomposition (7), a new lower bound
L:(Q,f) < L(Q) is obtained. The variational parameters can be learned iteratively as an
Expectation-Maximization (EM) procedure. As shown in Algorithm 1, in each iteration, £ val-
ues are fixed to update u, 33, a, and b in the E-step, and vice versa in the M-step. concatenate()
is the data accumulation procedure while learn_() are parameter estimation functions. All relevant
equations are given in the supplementary materials. filter() function can be thought as a filtering
procedure to select the most informative points, and it will be discussed in Section 5.

The bandwidth parameter may be approximately learned by maximizing £ w.r.t. « using gradient
descent in the inner while-loops of the algorithms. Although the more theoretically sound approach
would be to define a distribution over v and make further approximations, as also highlighted in
experiments, such procedures are intractable and redundant for this particular robotics application.

t+ -1 t+ —1
ag, by < small values 0o < asmall value
while sensor is active do while sensor is active do
t+—t+1 t—t+1
Get new scan Dy = {(x¢,¢)} Get new scan D; = {(x, y¢) }
if ¢ = 0 then if ¢t = 0 then
| D+ Dy D+ Dy,
else . o, 20 < O, 00_11
Dy + filter(Dy) else
D < concatenate(D, Dy) D <« filter(Dy)
end [ty Dap <= fle—1, g1
§=0 end
while not converged do £=0
i, X+ learn_w(&, D) E-ste while not converged do
a,b < learn_a(§, ag, by, D) p p, Xy < learn-w(&, pg, Xy, D) }E-step
& < learn_local(p, 2, a, b, D) }M-step § < learn_local(pi, X¢, D) }M-step
end end
end end
Algorithm 1: BHM Algorithm 2: SBHM

4 Sequential Bayesian Hilbert Maps (SBHMs)

In Section 3 we described the fully Bayesian treatment to Hilbert maps where hypeparameters « are
also learned by the model itself. Even though the model is theoretically appealing, it has several
shortcomings from an application point of view. Observe that the parameter structure of the prior
distributions is different to that of the posterior and hence the posterior in step t—1 cannot be directly
feedbacked as the prior at step ¢. Nevertheless, as shown in supplementary materials, since the prior
and posterior of BHM are interconnected merely by the expectation of all hyperparameters E(«),
the estimation of Q(w) is biased towards the data at time ¢, if all past data are discarded. This is why
BHM requires data to be accumulated over time to build an unbiased and robust long-term map.

To ameliorate the issues, we redefine the BHM prior as P(w) = N (w|u;—1, ;1) and the posterior
as Q(w) = N(w]u, X¢). Observe that, not only they share the same distribution structure—
Gaussian distributions with non-zero means and covariances—but also the posterior estimation of
the previous time step is used as the prior of the current time step. The assumption that the posterior
estimate of the previous step is good enough—captures all useful information—to be used as a prior
for the current step is validated in experiments, and the philosophy is illustrated in supplementary
materials following a simple Bayesian linear regression example given in [26]. Intuitively, simple
multivariate Gaussian distributions are sufficient for this application because we work in a rich high
dimensional feature space which is capable of absorbing non-linear spatial variations.

Att = 0, we start to learn with a diffuse prior (10, 3o) = N(0,0; 'T) where oy ~ 0, and
we experimentally verify that a good accuracy is obtained without having a hyperprior. Comparing



Algorithms 1 and 2, note that BHM not only requires data to be aggregated over time but also it
requires two posterior distributions to be computed. In contrast, in SBHMs, not only all previous
data are discarded but also posterior estimations are straightforward as the model is much simpler,

making overall computations significantly faster.

S Information filtering

In both methods, for each data point in each new se-
quential scan x,, except at ¢ = 0, occupancy level
f(x4) is computed. If each data point satisfies the cri-
terion | f(Xx) — Ytrue| > 7 such data points are used
for learning the map. Here, f(-) is the function that
is used to query from the map that has been learned
before incorporating the data from the new scan, and
Ytrue are the actual occupancy state € {+1,—1} of
each point in the current scan. As illustrated in Fig-
ure 3, this filters points that can provide new infor-
mation for an arbitrary threshold 7. For instance, if
a vehicle is moving into a new area, new information
around that area will be higher than that of stationary
areas. Although we attempted to use cross entropy,
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Figure 3: Having learned the map for ¢ — 1 time
steps, the information gain is calculated for each
point in the ¢ scan. The higher values, i.e. red,
indicate new information such as an area a vehicle
has entered. Therefore, adding data points with
smaller values, say values < 0.3, does hardly im-

the aforementioned criterion experimentally provided

better results. prove the accuracy.

6 Experiments

6.1 The experimental setup and evaluation

Three datasets, taken from [9], will be used for experiments. Dataset 1 is obtained from a simulator
which resembles a 80 m LiDAR covering 180°. As shown in Figure (1), this dataset has been
designed in such a way that vehicles travel more often in the left lane than in the right lane. The
walls in the sides of the roads are partially occluded by the parked vehicles. Datasets 2 is taken
from a real world four-way intersection with vehicles turning in different directions following traffic
lights. Its LIDAR covers 180" in a 30 m radius. Dataset 3 has also been captured from a real road
near a four-way intersection using a 60 m LiDAR which can see 270°. The code is available at
https://github.com/RansML/Bayesian_Hilbert_Maps.

In order to evaluate the occupancy level P(y = 1|x., X, y) of any point in the environment X, using
the proposed approaches (BHM and SBHM), the posterior distribution is marginalized. Our models
will be compared against, 1) variational sparse dynamic Gaussian process occupancy maps (VSDG-
POM) [9] which is capable of building similar maps to our approaches, 2) dynamic Gaussian process
occupancy maps (DGPOM) [27], and 3) dynamic Grid maps (DGrid), an extension of occupancy
grid maps to dynamic environments by keeping memory in each cell individually [28].

All experiments were run on a laptop with 8 GB RAM. It was assumed that the robot is stationary and
the localization is given. As in [9], the area under the receiver operating characteristic (ROC) curve
(AUC) will be used as the fundamental measure for comparisons. As an additional metric, negative
log-likelihood loss (NLL), also known as cross entropy, defined by —log p(y|y.) = —ylog (y.) +
(1 — y)log(1l — y,) will be used for evaluating accuracy in the spatiotemporal setting. Although
the model is hardly sensitive to its initial parameter settings, what we have used are given in the
supplementary materials. Filtering threshold 7 is the only parameter that needs to be chosen by
the user to maintain a desired speed-accuracy trade-off and it has been fixed to 0.3 throughout all
experiments.

6.2 The effect of the bandwidth parameter

Firstly, we visualize how the bandwidth parameter of the kernel affects the smoothness of the map.
As shown in Figure 4, large ~y values tend to produce less smooth maps while capturing sharp edges.


https://github.com/RansML/Bayesian_Hilbert_Maps

In contrast, small  values produce smoother maps because each point has a very high influence on
even farther neighbors making an average over a relatively large realm.
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Figure 4: The effect of « for the LiDAR scan at ¢ = 0 in dataset 1. (a)-(c) v = (0.0075,0.025,0.75) (d) A
sample plot of the negative loss function w.r.t. v

6.3 Spatial accuracy

To determine how well the occupancy probability of a given location can be predicted accurately,
always occupied areas such as walls, parked vehicles, and always unoccupied areas were labeled
manually. Note that this test dataset contains both occluded and non-occluded areas of the environ-
ment. The AUC is calculated over a period of time as the map is built sequentially. The last three
numerical columns of Table 1 indicate that spatial accuracy of BHMs and SBHMs is comparable or
better than Gaussian process based techniques, while significantly higher than grid maps.

The first column of Table 1 reports the accuracy of predicting occupancy state in occluded areas such
as behind parked vehicles which can be only labeled for the simulation dataset. As expected, unlike
the other three kernel methods, the grid based method is not robust against occlusions [3] as it does
not consider neighborhood information. However, on a different note, if the occlusions are large
and the area is not visible at all, obviously, even the kernel based methods will not be robust against
occlusions, and the accuracy will not be close to one. Nevertheless, in comparison with DGrid, here
we demonstrate the advantage of considering neighborhood information.

Table 1: Average AUC (u £ 20) for labeled spatial data. The last three columns show accuracy based on
randomly selected points from the environment and the first column indicates accuracy of predicting occluded
areas.

Method | Dataset 1 Occlu. | Dataset 1 Dataset 2 Dataset 3

SBHM 1.00 £ 0.01 099 +0.04 1.0040.00 0.96 +0.05
BHM 1.00 £+ 0.00 1.00 £0.01 1.00+0.02 0.9540.01
VSDGPOM 1.00 £0.00 0.99 £0.04 1.00£0.00 0.94+0.05
DGPOM 0.99 £+ 0.02 099 £0.02 0.98 +£0.08 0.96 +0.02
DGrid 0.50 £+ 0.00 0.78 £0.04 0.84 +0.17 0.91 +0.02

6.4 The effect of information filtering for dynamic mapping

As discussed in Section 5, because of the sampling procedure it is possible to obtain finitely many
data points for a single scan, and hence it is vital to filter informative data. Figure 5 illustrates speed-
accuracy trade-off for different threshold 7 values. The performance metrics are evaluated for each
step as the model is learned sequentially. The test dataset contains past, present, and future data
which are never used for training purposes.
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Figure 5: Speed-accuracy trade-off determined by 7 for dataset 1. Setting n = 0.1 filters =~ 80% of uninforma-
tive data and making the algorithm at least 3 times faster without deteriorating the accuracy.



6.5 Learning long-term maps

In this experiment, we demonstrate building spatiotemporal maps by following the experimental
procedure in Section 6.4. Figures 1 and 6 illustrate such long-term occupancy maps—which areas
of the environment are occupied in general—for the three datasets.

100

Figure 6: The satellite map of datasets 2 and 3 and their corresponding SBHMs. The arrows indicate the traffic
flow of the busy four-way intersections.
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Figure 7: Left to right columns: Datasets 1, 2, and 3. The first row shows the time performance while the last
two rows show accuracy metrics. SBHMs have an almost constant cost and significantly faster than the other
competing methods to obtain a better or similar accuracy. DGPOMS50% is DGPOM with 50% of data. Note:
1) SBHM (red) and DGrid (blue) are almost overlapped in row 1, 2) the lower the NLL, the better the model is.

As shown in Figure 7, although BHMs are also not scalable as VSDGPOMs, SBHMs are perfectly
scalable. In general, accuracy of both BHMs and SBHMs are slightly better than VSDGPOMs while
significantly better than DGrid. Although DGPOM and DGPOMS50% seem to have a better NLL at
first, they cannot be run for more than approximately 50 time steps because of the unwieldy growing
computational time. The average time to update the SBHM model for each new scan are 450, 8§,
and 970 ms for datasets 1,2, and 3, respectively. Most importantly, SBHMs have a approximately
constant update time similar to that of occupancy Grid maps, yet bringing all advantages of other
continuous mapping techniques.

7 Conclusions

We extended the Hilbert maps algorithm for mapping long-term dynamics. The variational Bayesian
formulation is fast for use in real time and highly scalable. We eliminated some vital parameter tun-
ing in conventional Hilbert maps, making it further convenient to use. Additionally, we demonstrated
that the maps are less susceptible to occlusions as they consider neighborhood information. These
inherent properties in the proposed approach as well as the main components of the algorithm—
kernels and Bayesian learning—can form the basis for developing a real-time simultaneous mapping
and path planning algorithm under a single framework.
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1 Demonstrating the concept behind sequential Bayesian Hilbert maps
(SBHMs) using Bayesian linear regression
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In Bayesian linear regression, a diffused prior
indicated by the isotopic Gaussian can be used
to build a shrunk posterior. That posterior can
be used for making predictions (mean and vari-

14 Bayesian linear regression ance).
. Let us consider a uniform prior: my = 0 and
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10 F
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Figure 1: a

Learning can be done sequentially, considering one or a few data points at a time and updating
the posterior. Once the posterior is updated, data can in fact be discarded as the posterior retains
information. Therefore, the model can be updated as new data are arrived sequentially without
accumulating data. The procedure is illustrated in Figure 2. In contrast to this method, SBHMs,

1. use a logistic regression classifier instead of linear regression

2. work in rich feature space instead of using raw data

1st Conference on Robot Learning (CoRL 2017), Mountain View, United States.
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Figure 2: Consider the first row. Columnl: We start with an isotropic prior with a large variance. Column
2: A data point (0,0) is added. Column 3: The likelihood for that data point is computed. Column 4: By
multiplying the prior with the likelihood and then normalizing, the posterior is obtained. Now consider the
second row. Same procedure is followed, having the posterior from the previous step used as the new prior and
multiplying with the likelihood of the new data point. This way, new information from each step is absorbed
into the posterior by restricting the posterior sequentially.



2 Learning parameters
The equations used in Algorithm 1 and 2 are detailed here.

2.1 BHMs

The objective function of the model is,

t
£Q.6) = el + gz + 3 (1omo(en) + A6 - )
n=0
['(a) bo™° bo
+ log Tao) + log b +a<1 - b) (3)
, Where, . X
MO = 5¢ (70 - 3). @

with & as a local parameter used to linearize the function using the Taylor expansion.

E-step: Estimating Q(w) = N (w]u, X),

t
p= E<Eoluo + ) (yn — 0~5)‘I>(xn)> (5)
n=1
B a D N .
w1 {bxdd} 1237 = (6D (x)D(xs) ©)
d d=1 n=1

Estimating Q(a) = I'(a|a, b) = [, T(cwala, ba),

1
a=ao+t )
1
ba =bo + §W3 + Xad (®)
M-step:
2 _ 5T T
§r =P (%) (B0 + popry )P () ©)

Here, ¢ is the current time step. All data points from time= 0 to time= ¢ are in each iteration.

2.2 SBHMs
The objective function is,
K
1 e 1 _ 1 _ &k
L£(Q,€) = 5 log 27; + §M:Et Yy - 5#320 Yo + Z (1oga(§k) +ENER) — 2) (10)
k=0
E-step:
Ky
e = (Et_ﬂut_l +) (- 0-5)<I>(xk)) (11)
k=1
Ky
S =S 2> ME)B(xk) P (xk) (12)
k=1
Here, k indicates all the points in the ¢*" time scan. There are K such data points.
M-step:
& =@ (xk) (Sr + popay )(x) (13)

For a more detailed discussion on the topic, readers are encouraged to go through [22] and [25].



2.3 Practical considerations for the implementation
For numerical stability perform inversions Ax = b = x = A~'b using Cholesky factorization

A=LL".

3 Experiments

3.1 Initial settings

In order to have an approximately diffuse priors, the initial conditions of the BHM were ag = 1073
and by = 10~* while they were oo = 10~* in SBHM. The filter threshold was always = 0.3.
The hinging locations x were set every 5 m for datasets 1 and 2 while they were set every 2 m for
dataset 3. Theoretically, the higher the number of centers, the richer the feature space, and slower
the algorithm will be.

3.2 Other observations

In SBHMs, although the very first step would take around 10 iterations for convergence, merely one
iteration is sufficient for subsequent model updates.
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