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Abstract—Autonomous operation of blast hole drill rigs
requires monitoring of drilling parameters known as “Mea-
surement While Drilling” (MWD) data. From these data, rock
properties can be inferred. A supervised classification scheme
is usually used to map MWD data inputs to rock type outputs
given some labeled training data. However, the geology has no
definite ground truth that can allow a reliable labeling of the
training data, nor is there a clear input-output pair connection
between the MWD data and the rock types. In this paper, an
adaptive unsupervised approach is proposed to estimate the
rock types in a data driven way by minimizing the entropy
gradient of the characterizing measure - “Optimized Adjusted
Penetration Rate” (OAPR). Neither data labeling nor fixed
model parameters are required because of the data driven
nature of the algorithm. Experimental results illustrate the
effectiveness of our solution.

I. INTRODUCTION

One of the world’s major mining companies, Rio Tinto, is
currently working to automate the operation of a large open
pit iron ore mine in the Pilbara region of Western Australia. A
significant challenge in this work is to build representations
of the unmined (in-ground) geology to determine the location
of the ore boundaries and the variations in the quality of the
ore and host rocks. Identifying rock types plays an important
role in numerous aspects of mining, e.g., rock boundary maps
are useful for mine design and rock strength information
can assist with the design of blasting patterns as well as the
selection of drilling parameters.
Conventionally, geological modeling is accomplished

manually by geologists using data from exploratory drilling.
This process is time intensive and expensive on several
accounts. Firstly, drilling and the logging of cores and chips
takes time and is costly. Also, the subsequent geological
modeling with the assistance of 3D software tools, is time
consuming and strongly relies on geologists’ experience
and skills. In addition, models are constrained by rock
boundaries, the locations of which may not be adequately
known and also may not reflect real world situations where
the changes in geology are gradual. All of these reasons
motivate the development of a more efficient and precise
solution.
For some time, blast hole drills have been equipped

with drill monitors which record a drill’s performance via
measurements of mechanical performance settings such as
penetration rate (PR), pulldown pressure (PP), rotation pres-
sure (RP), rotation speed (RS) and bit air pressure (BAP),

(a) Autonomous blast hole drill
rig used for collecting MWD
data.

(b) Illustration of blast holes layout.

Fig. 1. Autonomous drill rig and the (partial) pattern of holes used to
fragment needs prior to the mining of ore (the size of a typical mining
bench is 30-40m wide by more than 200m long).

etc. These measurements are collectively known as “Mea-
surement While Drilling” (MWD) data. In the case of the
commonly used rotary drilling method, it is found that PR,
PP and RP are the measurements that are most responsive
to changing geological conditions.
An autonomous blast hole drill rig used for collecting

MWD data is shown in Figure 1(a). Figure 1(b) is a simpli-
fied illustration of a blast hole layout across major rock types
of interest, which are typically shale, ore and banded iron
formation (BIF). MWD data are collected from those blast
holes which are typically 12m deep. In principle, variations
in MWD data reflect changes in the physical properties of
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the rocks and can provide direct evidence of the geological
situation. For our work on developing an autonomous mine,
machine learning techniques can therefore be used with these
data to provide suitable geological interpretations, i.e., to
build a function that maps the input MWD data to the output
rock properties and to verify the results with an estimate of
the ground truth provided by other means. Such a solution
allows real time estimation of the types of rocks being
drilled. For verification purposes, the ground truth needs to
be estimated from the alternative data sources (such as drill
chip assays from exploration and blast holes) that are used
for conventional manual geological modeling. However, what
makes this problem different to a typical machine learning
problem is that there is not a clear one to one correspondence
between the MWD values and the rock types. Any individual
rock type can have a range of MWD representations. Also,
prior to mining, absolute certainty about the geology and
ground truth is not possible. Certainty after mining is also
difficult to establish on account of the fragmentation of the
rocks and the physical displacement that occurs as a result
of blasting.
In response to these challenges, we adaptively transform

the MWD data features into one single feature we call
“Optimized Adjusted Penetration Rate” (OAPR). OAPR is
expressed in a parameterized combination of PR, PP and RP
as shown in eqn (1) so that the variation of the data can
be better approximated. The function parameters θ1 and θ2

are estimated by minimization of the OAPR entropy gradient
[3][4],

OAPR = f(PR,PP,RP, θ1, θ2), (1)

where θ1 and θ2 are the function parameters.
As opposed to the existing entropy minimization solutions

[6][7][8] which seek the absolute minimum entropy value,
our parameter optimization minimizes the entropy gradient
so that the targeted multi-modal pattern is easily identified.
Gaussian Process regression [1] is then applied to the OAPR
values of individual holes to create a more dense rock
strength distribution.
The main contributions of this paper are:
1) On the application side, a novel flexible rock strength
characterizing scheme has been proposed that catego-
rizes the underlying pattern in a fully data driven way.

2) From the algorithm point of view, a new feature
extraction method has been developed for adaptively
deriving features out of the given data that effectively
represents the underlying pattern, regardless of the data
distribution and the number of categories.

3) As a key part of the proposed approach, parameter
optimization of extracted features is distinctively car-
ried out by entropy gradient minimization, which better
reflects the intrinsic properties of the given data.

The remainder of this paper is organized as follows.
Related work is briefly introduced in Section II. Section III
describes the adaptive data modeling method. Section IV
presents results of our approach on a mining site dataset.
Finally, Section V summarizes the main conclusions.

II. RELATED WORK

The idea of relating drilling measurements to the prop-
erties of rocks (i.e., the rock recognition problem) has
been studied before in an empirical or statistical way
[12][10][11][15][14], where Teale’s Specific Energy of
Drilling (SED) [12] is most widely cited. Machine learn-
ing techniques have also been applied to drilling data
based rock recognition, including unsupervised learning
[13] and supervised learning, such as Neural Networks
(NN) [16][18][17][9], Conditional Random Field modelling
[19][20] and Gaussian Process classification [21]. The super-
vised learning rock recognition methods classify rock types
based on a model trained from the existing labeled datasets.
The major problem of such a supervised learning approach
is that, as mentioned above, accurate geological labeling for
training the MWD data is difficult. Local and more gerneral
variations in the geology create a situation where the ground
truth of an unmined site is never precisely known.
As a precursor to our current approach, we have in-

vestigated means of identifying rock types by means of
estimating the continuous rock strength distribution followed
by a further clustering to rock types. In [22], a hybrid classifi-
cation approach is presented by combining Gaussian Process
regression with unsupervised clustering. An integrated MWD
measure - “Adjusted Penetration Rate” (APR) is defined to
convert the challenging classification problem to tractable
regression and unsupervised clustering problems. At any
point, APR is given by the penetration rate (PR) divided by
the product of pulldown pressure (PP) and the square root
of rotation pressure (RP), i.e.,

APR = PR/(PP ∗RP 0.5). (2)

APR removes some of the variability in PR measurements
caused by variations in PP and RP. It gives a good indication
of rock strength which in turn bears a relationship to rock
type. In general terms, for the three major rock types we are
concerned with, shale is the weakest, followed by ore and
BIF is the strongest.
However, the geology can vary significantly within a mine

and between mines. The relationship between the drilling
mechanics and the underlying rock characteristics is also not
yet well explored and modeled. Therefore, it may not always
be appropriate to use a single definition for APR. Further
work is needed to extract the rock characterizing measure in
a more stable and robust way.

III. ADAPTIVE ROCK STRENGTH MODELING

As indicated in Section I, entropy is employed in our
proposed approach to optimize the estimation of the rock
strength measure - OAPR. Entropy, entropy gradient as well
as relative entropy are briefly introduced in Section III-A.
Section III-B describes the details of adaptive rock strength
modeling.
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Fig. 2. Entropy distribution when altering θ1 and θ2 which are the power
indices of PP and RP for a mining site dataset.

A. Entropy, Entropy Gradient and Relative Entropy
Entropy is a measure of the uncertainty which qualifies the

information contained in a message with a given probability
distribution [5].
Given a discrete random variable X with alphabet A and

a probability mass function p(x) = P (X = x), the entropy
of X can be expressed as [5],

H(X) = −
∑
x∈A

p(x) log p(x). (3)

For a real function of two variables f(X,Y ), the entropy
of f(X,Y ) is,

H(f(X,Y )) = −
∑

x,y∈A

p(f(x, y)) log p(f(x, y)). (4)

The entropy gradient, which is the differential change of
entropy along the direction of largest directional derivative,
is defined as,

∇H =
∂H

∂f
·
∂f

∂x
�x +

∂H

∂f
·
∂f

∂y
�y, (5)

where ∂H
∂f
is the partial derivative of H , ∂f

∂x
and ∂f

∂y
are the

partial derivatives of f .
The magnitude of the entropy gradient is,

|∇H| = |
∂H

∂f
·
∂f

∂x
�x +

∂H

∂f
·
∂f

∂y
�y|

=

√
(
∂H

∂f
·
∂f

∂x
)2 + (

∂H

∂f
·
∂f

∂y
)2.

(6)

To quantitatively compare the similarity between two
distributions q(x) and r(x) (as done in Section IV), the
Kullback-Leibler divergence (KL divergence, also called the
relative entropy), is defined as follows, which can be taken
as the ”distance” between the two distributions,

D(q‖r) = −
∑
x∈A

q(x) log
q(x)

r(x)
. (7)
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(b) θ1=1.5 and θ2=1.5.
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(c) θ1=3.0 and θ2=3.0.

Fig. 3. Changing of OAPR data distribution with θ1 and θ2 for the mining
site dataset in Fig 2.

B. Adaptive Rock Strength Modeling

As indicated in [22], it is very difficult for supervised
learning to predict rock types from MWD data in a satis-
factory way as the training data cannot be properly labeled
due to the big uncertainty of the geology. A rock strength
characterizing measure APR (as shown in eqn (2)) has been
developed. Such an approximation does build the mapping
between MWD data and rock strength, which is not explicitly
shown on the raw data. However, due to the complexity of the
underlying drilling mechanics and the geological variation
from site to site, it is unlikely that such an approximation
can consistently guarantee the satisfactory performance at
various mining sites. On the other hand, explicitly building a
more precise mapping between the MWD data and the rock
strength is difficult as a definite model of the underlying
drilling mechanics is unavailable.
Basically, APR can be taken as a feature extracted from

the relevant MWD data features (PR, PP and RP). In general,
feature extraction [2] constructs the combination of the given
data features and transforms to a reduced feature set, so as
to have a more efficient and accurate description of the data.
With regards to all the challenges mentioned above, we

aim at extracting a new rock strength characterizing measure
- called “Optimized Adjusted Penetration Rate” (OAPR)
in an adaptive and fully data driven way, regardless of
the underlying drilling mechanics and the variable geology.
As a result of studying on the drilling operations, some
simple rules are summarized (verified by the drilling experts
and geologists) and used as the basic physical meaning
assumptions in further feature extraction,
1) PP and RP are the major applied forces on changing
PR, with joint impact in a factorized way. The impact
of either PP and RP will not exceed PP3.5 or PP3.5

respectively.
2) PR is proportional to the rock strength with fixed PP
and RP values.

3) Realistically, PP and RP are all subject to change in
a correlated way, which also brings about changes on
the PR value when drilling rocks of similar strength.

4) There exists a distribution of up to three major rock
types (i.e., shale, ore and BIF). The rock strength is
normally smooth within each rock type.
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(b) Synthetic data divisor P.
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(c) Synthetic data quotient V / Pθ , θ = 1.0.

Fig. 4. A synthetic example illustrating the convergence of the data quotient.
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Fig. 5. Entropy and entropy gradient of the synthetic example.

Putting the above assumptions into consideration, we
model OAPR as PR divided by a factorized combination of
PP and RP. Since it is difficult to estimate the proportion of
PP and RP that contribute to the correction of PR, we define
OAPR in a flexible parameterized way as in eqn (8), i.e., PR
is divided by the product of PP and RP to a power index of
θ1 and θ2 respectively. θ1 and θ2 are the OAPR parameters.

OAPR(θ1, θ2) = PR/(PP θ1 ∗RP θ2), (8)

where θ1 ∈ [0 3.5] and θ2 ∈ [0 3.5] (assumption 1).
With OAPR being the rock strength characterizing mea-

sure, there exist the optimized parameter values [θ∗
1
, θ∗

2
] that

allow OAPR(θ∗
1
, θ∗

2
) to converge to and best match with the

rock strength distribution (there could exist multiple optima
which is beyond the scope of this paper). While for the rest
of the [θ1, θ2] values, OAPR(θ1, θ2) shows a less consistency
with the existing rock strength distribution.
The optimized OAPR parameters [θ∗

1
, θ∗

2
] are estimated

through entropy analysis. As shown in eqn (8), OAPR is
the function of two variables [θ1, θ2], i.e., OAPR=φ(θ1, θ2).
The probability distribution of OAPR is estimated on a n
bins histogram. OAPR entropy is then calculated based on
the derived histogram,

H(φ(θ1, θ2)) = −
n∑

i=1

p(φi(θ1, θ2)) log p(φi(θ1, θ2)), (9)

where φi(θ1, θ2) is the number of φ(θ1, θ2) values dropped in
the ith bin of the histogram, p(φi(θ1, θ2)) is the percentage
of φ(θ1, θ2) values dropped in the ith bin.

It should be noted that the conventional entropy minimiza-
tion methods [6][7] do not apply to our case. As can be
seen from eqn (8) that continuous increase of [θ1, θ2] will
monotonically decrease entropy towards creating a uniform
distribution of OAPR and make the underlying rock strength
converge to one class, which diverts from the expected three
rock types in our application.
Figure 2 and Figure 3 show some intuitive illustrations

of how entropy minimization works on OAPR. In Figure
2, OAPR entropy values decrease monotonically with the
increasing of PP power index θ1 and RP power index θ2. Cor-
respondingly, OAPR histogram plottings in Figure 3 show
that the variety of OAPR values drop significantly with the
increasing of θ1 and θ2. Obviously, absolute minimization of
entropy will lead to a “flattened” data distribution, resulting
in the unitary class, which is not what we try to reveal.
What is needed here is a method that can locate the opti-

mized OAPR parameters [θ∗
1
, θ∗

2
] properly w.r.t. to the three

rock types. As indicated above, the optimized OAPR(θ∗
1
, θ∗

2
)

distribution should be discriminative from the rest of the
OAPR(θ1, θ2) distributions, and is supposed to better match
with the rock strength distribution. Our tests on various
datasets have shown that a sharp drop of the OAPR entropy
gradient is strongly correlated to an optimized OAPR[θ1, θ2]
distribution that better approximates the rock type distribu-
tion.
This sharp entropy gradient change is a good reflection

of the physical meaning assumptions in Section III-B. Any
[θ1, θ2] values other than the optimum [θ∗

1
, θ∗

2
] will deviate

the OAPR[θ1, θ2] distribution from the three rock types
approximation. This will greatly diversify the OAPR values,
resulting in a much higher entropy value (and hence a
high entropy gradient change). Essentially, OAPR optimum
OAPR[θ∗

1
, θ∗

2
]) can be taken as the “anomaly” hidden in the

non-optimum diversified OAPR values. It is indicated in [3]
[4] that it is the entropy gradient not the entropy itself, that
is correlated to the anomaly detection.
A simplified 1D illustration of how the entropy gradient

varies with the changing of the power index of the divisor
is shown in Figure 4 through to Figure 6 using 1D synthetic
data. To simulate the typical three rock types that normally
exist, we make the data in Figure 4(c) (which is the quotient
of data in Figure 4(a) and Figure 4(b)) to have three
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Fig. 6. A synthetic example with varied parameters.

categories, which are assumed to be the underlying patterns.
Figure 5(a) and Figure 5(b) show the changes in entropy

as well as the entropy gradient of the quotient V/P θ w.r.t.
the increasing of θ (this is a simplified version of simulating
PR/(PP θ1 ∗ RP θ2) w.r.t. the increasing of θ1 and θ2 in
eqn (8)). It can be seen that around the underlying pattern
(where θ = 1), the entropy gradient reaches its minimum.
Figure 6(a) to Figure 6(e) plot the quotient V/P θ versus θ,
where the most distinguishable pattern (Figure 6(c)) appears
at θ = 1 when the corresponding entropy gradient reaches
its minimum as in Figure 5(b).
Eqn (10) is the OAPR object function which seeks to

optimize [θ1, θ2] and minimize the gradient of the OAPR
entropy,

[θ∗
1
, θ∗

2
] = arg min

θ1,θ2

(sign(dH) · |∇H(φ(θ1, θ2))|), (10)

where |∇H(φ(θ1, θ2))| is the gradient magnitude of the
OAPR entropy w.r.t. θ1 and θ2, sign(dH) is the sign of
differential of H , θ∗

1
and θ∗

2
are the optimized values of θ1

and θ2 respectively.

IV. EXPERIMENTAL RESULTS

Experiments have been carried out on the same mining
data as those used in [22], which contains a good mixture
of the three major rock types - shale, ore and BIF. Figure
7 shows a surface map with the locations of the blast holes
as well as the assumed approximate rock type boundaries
(the “ground truth”). The blast holes are 5-6m apart and
12m deep. The “ground truth” was provided by experienced
geologists using alternative geological data, such as visual
examination of drill chips, chemical assays and geophysical
logging data. It is a reasonable approximation of the “ground
truth”.
The red zone represents shale, the weakest rock present

(as discussed in Section I), the blue represents BIF which
is the strongest and the green indicates ore which has
intermediate strength. In the following results, the redder
colors correspond to higher OAPR values which imply lower
rock strength (likely to be shale), and the more blue colors
indicate lower OAPR values corresponding to rocks with
higher strength (likely to be BIF). Green colors represent
the medium strength rocks (likely to be ore).
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Fig. 7. Blast holes as well as the assumed rock type boundary “ground
truth” of the experimental real mining site data.

(a) Entropy of the real mining site data.

(b) Entropy gradient of the real mining site data.

Fig. 8. Entropy and entropy gradient of the real mining site data.
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(a) Raw PR with θ1 = 0

and θ2 = 0.
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(b) OAPR with θ1 = 0.5

and θ2 = 1.0.
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(c) APR with θ1 = 1.0 and
θ2 = 0.5.
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(d) OAPR with θ1 = 2.0

and θ2 = 0.5.
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(e) OAPR with θ1 = 3.0

and θ2 = 0.0.

Fig. 9. Rock strength from different PR/APR/OAPR values. Red dashed lines are the assumed shale/ore boundary, yellow dashed lines are the assumed
ore/BIF boundary.

As described in Section III, OAPR values determined with
varied values of θ1 and θ2 in the range [0, 3.5] are first
calculated using eqn (8). This is a reasonable range because
if values of θ go much beyond the upper bound 3.5, OAPR
(eqn (8)) begins to loose the ability to discriminate between
rocks other than the very soft and the very hard and the
targeted tri-model pattern is lost.
Entropies as well as entropy gradients of the OAPR values

are then calculated following eqn (9), eqn (5) and eqn
(6) with the results shown in Figure 8(a) and Figure 8(b)
respectively. For the entropy gradient in Figure 8(b), the min-
imum entropy gradient point and corresponding optimized
[θ∗

1
, θ∗

2
] parameters occur at θ∗

1
= 3.0 and θ∗

2
= 0. The

extracted [θ∗
1
, θ∗

2
] values are then fed into eqn (8) to derive

the OAPR(θ∗
1
, θ∗

2
) values. GP regression on a more dense grid

(0.5m apart) is further applied to the OAPR(θ∗
1
, θ∗

2
) values

to get the distribution of rock strength shown in Figure 9.
Here, the red dashed lines represent the assumed shale/ore
boundaries and the yellow dashed lines for the assumed
ore/BIF boundaries from the “ground truth”.
Figure 9(a) and Figure 9(c) show results from [22] where

Figure 9(a) is the rock strength distribution using the original
PR. Figure 9(c) is the rock strength distribution using APR
with θ1 = 1.0 and θ2 = 0.5. Figure 9(e) is the rock strength
distribution using OAPR with θ1 and θ2 optimized by our
proposed approach, i.e., θ1 = 3 and θ2 = 0. Compared with
the geology in Figure 7 (which is used as the “ground truth”),
Figure 9(e) is the best, with well established shale zones (red)
and a distinct ore (green) and BIF (blue) zones.
To explore the changing trend of OAPR characteristics

with θ1 and θ2, two more rock strength distributions are
added in Figure 9(b) (θ1 = 0.5 and θ2 = 1.0) and Figure 9(d)
(θ1 = 2.0 and θ2 = 0.5). As can be seen from Figure 8(b),
in addition to the lowest entropy gradient value point, which
is θ1 = 3 and θ2 = 0, there exists another major drop in the
entropy gradient values along the diagonal direction of the
θ1 and θ2 axes. θ1 = 0.5 and θ2 = 1.0 is on the upper left
side of this major gradient drop with higher entropy gradient
value, while θ1 = 2.0 and θ2 = 0.5 is located on the opposite
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Fig. 10. 1D projected OAPR values with θ1 = 3.0, θ2 = 0 and the 1D
projected ”ground truth”.

side with a lower entropy gradient value.
For all the results in Figure 9, the identification of the

rock type zones gets consistently better from left to right,
while the corresponding entropy gradient values in Figure
8(b) monotonically decrease. This shows that the entropy
gradient is a key factor in allowing the OAPR to converge
to the underlying rock patterns.

TABLE I
KULLBACK-LEIBLER DIVERGENCE COMPARISON ON DIFFERENT OAPR

VAULES WITH VARIED REFERENCE GEOLOGY PARAMETERS.
KL1 - KL DIVERGENCE W.R.T. BIF=0.15, ORE=0.35, SHALE=0.60,
KL2 - KL DIVERGENCE W.R.T. BIF=0.30, ORE=0.40, SHALE=0.50,
KL3 - KL DIVERGENCE W.R.T. BIF=0.10, ORE=0.50, SHALE=1.00

θ1 θ2 KL1 KL2 KL3

0 0 69.38 71.57 4.23
0.5 1.0 52.05 54.15 -8.04
1.0 0.5 42.12 46.10 -17.08
2.0 0.5 17.34 22.33 -34.77
3.0 0 8.26 15.19 -41.96

The comparison of the results needs to be conducted
visually because the “ground truth” for the geology of an
unmined site is never precisely known (see Section II).
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Qualitative judgement should be directed towards choosing
solutions where the rock variations have relatively smooth
and simple surfaces, and there is relatively little structure
within each rock type.
To assess the performance of the OAPR characterized

rock strength distribution in a more quantitative way, OAPR
values in Figure 9 are projected to 1D on the “Northing” axis.
The blue solid curve in Figure 10 is the 1D projection result
of the OAPR values in Figure 9(e). The reference “ground
truth” is also set up as the 1D projection result of the “ground
truth” in Figure 7.
To compare the similarity between the 1D projection of

OAPR and rock type “ground truth”, the KL divergence is
calculated following eqn (7). However, it should be noted
that the two distributions q(x) and r(x) are taken as the
spatial 1D distribution shown in Figure 10 rather than the
probability distribution as it was originally defined in eqn
(7), since the rock strength distribution is spatially oriented
and concerned.
Table I lists the KL divergence results of OAPR values

in Figure 9 w.r.t. three groups of reference “ground truth”.
With varied “ground truth” parameters, the KL divergence
monotonically decreases along the five groups of OAPR val-
ues in Figure 9. The minimum KL divergence value occurs
at θ1 = 3.0 and θ2 = 0.0. This quantitative examination
is consistent with the visual examination of Figure 9 which
suggests that that OAPR (θ1 = 3.0, θ2 = 0.0) best reflects
the underlying rock structure. It is therefore inferred that the
OAPR provides a robust method for distinguishing the rock
types from drilling data.

V. CONCLUSIONS

A novel self adaptive scheme we have called the optimized
adjusted penetration rate has been proposed for rock type
categorization which minimizes the entropy gradient of the
MWD based rock strength measure. Key advantages of this
scheme are that prior data labeling is not needed and the
model parameters can be adaptively estimated, guaranteeing
a constant optimized modeling for all data. Experiments on
actual data have shown that our proposed method has a
satisfactory performance in identification of rock types.
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