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Abstract This work considers the problem of building high-fidelity 3D representa-
tions of the environment from sensor data acquired by mobile robots. Multi-sensor
data fusion allows for more complete and accurate representations, and for more re-
liable perception, especially when different sensing modalities are used. In this pa-
per, we propose a thorough experimental analysis of the performance of 3D surface
reconstruction from laser and mm-wave radar data using Gaussian Process Implicit
Surfaces (GPIS), in a realistic field robotics scenario. We first analyse the perfor-
mance of GPIS using raw laser data alone and raw radar data alone, respectively,
with different choices of covariance matrices and different resolutions of the input
data. We then evaluate and compare the performance of two different GPIS fusion
approaches. The first, state-of-the-art approach directly fuses raw data from laser
and radar. The alternative approach proposed in this paper first computes an initial
estimate of the surface from each single source of data, and then fuses these two
estimates. We show that this method outperforms the state of the art, especially in
situations where the sensors react differently to the targets they perceive.

1 Introduction

The ability to build high-fidelity representations of the environment is critical for
autonomous robots [14]. Range scanners such as laser range finders and radars are
widely used in field robotics [10]. However, like any sensor, they suffer from limi-
tations, e.g. in terms of field of view, resolution and noise [1]. Consequently, robots
need techniques that can estimate accurate representations of the environment with
incomplete data and uncertainty.

Gaussian Processes (GP) have become a popular technique in recent literature
of robotic perception, due to their ability to learn spatial representations from noisy
data in a non-parametric Bayesian fashion [12]. Gaussian Process Implicit Surfaces
(GPIS) [19] is a mechanism to estimate the surface of an object with uncertainty,
within a GP framework, by representing the geometry of the object as an Implicit
Surface [15]. GPIS applied on range data offers a number of benefits to overcome

Australian Centre for Field Robotics (ACFR), The University of Sydney NSW 2006, Australia.
{m.castro,t.peynot,f.ramos}@acfr.usyd.edu.au

1



2 Marcos P. Gerardo-Castro, Thierry Peynot and Fabio Ramos

the aforementioned problems. Firstly, the generated model is fully predictive as it
is able to predict a surface at arbitrary regions of an object that were not entirely
observed by the range sensor [5]. Secondly, the model also yields the uncertainty
of the estimates, at any point of the surface. By capturing the correlations between
points using parametrized covariance functions, only a limited number of points are
required to learn an accurate model. In addition, the GP can automatically handle
the model selection (parameter estimation) efficiently.

The use of data from multiple sensing modalities can help to obtain a more com-
plete and accurate representation of an object. As these modalities sense the envi-
ronment using different physical processes, they also respond differently to some
materials, textures, or environmental conditions [1, 4]. Consider the example of a
car with windows perceived by a laser and a radar. Lasers operate at near-infrared
frequencies of the electromagnetic spectrum, which are close to visible wavelengths.
Therefore, a window appears mostly transparent to their sensing. In contrast, a mm-
wave radar operates at lower frequencies (e.g. around 94GHz), and is getting more
returns back from the surface of the windows. On the other hand, on the rest of the
car, the laser sensing is more accurate [1]. Therefore, a more complete and more
accurate representation of the car can be obtained by fusing the data from the two
sensor modalities.

In this paper we perform the fusion of data from two distinct sensing modalities
(a laser and a radar) within a GPIS framework, in the context of field robotics. We
propose a thorough experimental analysis of the performance of 3D surface recon-
struction from laser and radar data in a realistic field robotics scenario: an unmanned
ground vehicle (UGV) scanning an outdoor environment. We first analyse the per-
formance of the GPIS approach using raw laser data alone, and using raw radar data
alone, with 4 different choices of covariance matrices and different resolutions of
the input data, on a total of 8 objects with different geometries. We then evaluate
and compare the performance of two different fusion approaches within the GPIS
framework. The first approach directly fuses raw data from the two different sensor
modalities in the GPIS, as in [2]. In the second approach, we fuse points extracted
from two initial estimates of the object surface that were built using raw laser data
only and raw radar data only, respectively. We show that this novel approach out-
performs the first state-of-the-art approach, especially in cases where the sensing
modalities react differently, perceiving different targets. Although we put special
emphasis on the implementation of data fusion for laser and radar data in this paper,
the frameworks for GPIS fusion may be used with different range sensors.

The paper is organised as follows. Sec. 2 discusses related work on surface re-
construction with uncertainty representations, GPIS, and multi-sensor data fusion.
Sec. 3 develops the GPIS framework used in this work and the fusion methods con-
sidered. Sec. 4 describes the experimental setup and Sec. 5 presents the experimental
evaluation and analysis. Finally, Sec. 6 proposes conclusions and elements of future
work.
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2 Related Work

The problem of estimating continuous representations of data from range sensors
has been extensively studied in the recent literature [13, 8]. To build continuous
representations from range sensor data while accounting for uncertainties, different
variations of Gaussian Processes have been implemented in the robotics community.
Gaussian Beam Processes [11] give an independent treatment of the noise using
heteroscedasticity on the beams, however, this approach is limited to 2D scenar-
ios. Other applications using GP in 3D scenarios are related to mapping and terrain
modelling [17, 7]. These approaches adopt the same parametrisation problem by
associating a single elevation value z with any given position (x,y) in 2D Euclidean
space. While this way of mapping is effective for applications such as terrain mod-
elling, it is not suitable for applications that consider the full 3D mapping case, e.g.
full 3D modelling of an object, where there can be multiple elevation values for
a given (x,y). Implicit Surfaces (IS) is a representation that is appropriate for this
case [15]. It takes advantage of the geometry and topology of the objects. GPIS is a
framework to estimate IS surfaces with uncertainties using Gaussian Process [19].
This approach has been applied to range sensor data for robotics applications in dif-
ferent contexts, such as change detection [18], active learning [5], and grasping [2].

Gaussian Process has been shown to be a powerful tool for multi-sensor data fu-
sion when considering noisy input data [7, 3]. This concept has been adopted in [6],
which proposes a sensor fusion framework based on a mixture of GPs. The appli-
cation focussed on affect recognition, rather than object representations. GP data
fusion was also explored in [17], where the author fuses raw data from laser scan-
ner and Global Positioning System, with distinct noise models for each data source.
However, this approach uses a representation that only allows for a single elevation
value at a given (x,y) location, which is not appropriate for representing objects, as
mentioned above. A similar fusion approach was used in [2] within a GPIS frame-
work. Raw data from lasers and tactile sensors are directly fused in a GPIS with
multi-variance noise in the input dimensions. However, the paper shows limited ex-
perimental results and no error analysis is provided. In this paper we propose an
extensive experimental analysis of the performance of sensor data fusion within a
GPIS framework, in the context of field robotics.

3 Gaussian Process Implicit Surfaces

3.1 Implicit Surfaces

Consider a set of points X = [x1,x2, ...xn] in Euclidean space corresponding to ob-
servations of the object. In order to model an object represented by X , an Implicit
Surface is defined as the 0-level set of real-valued function f : R3→ R, where the
function f specifies whether a point x is inside the surface ( f (x) > 0), outside the
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surface ( f (x)< 0), or on the surface ( f (x) = 0). Such constraints values are assigned
to the variable Y , so that Y = [ f (x1), f (x2)... f (xn)]. Direct observations made by
range scanners are usually assumed to be on the surface of the object, therefore,
zero-value constraints ( f (x) = 0) are assigned to the sensor measurements. Addi-
tional observations of points known to be inside or outside the object may be added
to help the estimation process.

3.2 Gaussian Process Implicit Surfaces

Gaussian process regression can be used to provide the surface estimate f∗(x∗),
with variance V( f∗(x∗)) based on observation data from X and constraints Y (i.e.
targets for the GP), defined as training data under the GPIS framework. This can be
formulated as:

P( f∗(x∗) |X ,Y,θ ,x∗) = N ( f̄∗,V[ f∗]), (1)

where θ is a set of hyper-parameters. The mean f̄∗ and variance V[ f∗] at a selected
point x∗ given the measured data X are:

f̄∗ = k(x∗,X)T (K +σn
2I)−1Y (2)

V[ f∗] = k(x∗,x∗)− k(x∗,X)T (K +σ2
n I)−1k(x∗,X), (3)

where K is a covariance matrix. The noise variance of the observed data is repre-
sented by σ2

n I. Note that σ2
n can be learnt along with the other GP hyper-parameters.

In this paper, we implement different stationary kernels: the exponential covari-
ance function,
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The hyper-parameter σ2
f represents the signal variance and the length-scale is rep-

resented by `, ∆k = |xi− x j|. kM3/2 and kM5/2 are stationary covariance functions
used to amplify the sensitivity between the correlations of the points compared to
the widely used square exponential (Eq. (4) with γ = 2), which produces a smooth
kernel that drops off with distance. We extend our analysis to the exponential co-
variance function (γ = 1), which is even more sensitive to changes.

An important aspect of the GP is the optimisation of the hyper-parameters
θ = (σ f , `,σn). In this paper this was done by maximising the log-marginal likeli-
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hood. The Cholesky decomposition was used to obtain the predictors ( f̄∗ and V[ f∗])
and the log-marginal likelihood [12]. Once an estimate f∗ of the surface has been
obtained, 3D surface points and corresponding variances are then computed for val-
ues of f∗ = 0 in Eq. (2) and Eq. (3) by querying in a region pre-defined by x∗.

3.3 Single-Sensing-Modality GPIS

We define a single-sensing-modality GPIS as a GPIS whose input is a set of data
provided by a single sensor type (in this paper, laser or radar), as illustrated in Fig. 1.
We name the process GPISi, The input data Xi and Yi, the estimated surface f̄i∗ , and

€ 

f i (x*)
GPISi 

GPIS 

Query 
Points 

€ 

Xi

€ 

Yi

€ 

Vi(x*)
€ 

X*

Fig. 1 GPISi process, using laser (i = L) or
radar (i = R) input data.

Fig. 2 Argo UGV equipped with the laser
and radar sensors used in this study.

the variance Vi∗ , where the index i specifies the nature of the input data: i = L if the
input data is provided by a laser, and i = R if the data is from a radar. A global noise
parameter σn

2 is used for all the input points in each GPISi (see Eqs. (2) and (3)).

3.4 Multi-Sensor Data Fusion: GPISLR

The first fusion method, GPISLR, fuses two sets of raw data, XL and XR, acquired
by laser and radar, respectively, in a single GPIS. The approach is similar to the
one in [2]. The input data of GPISLR is composed of all training points from each
sensing modalities put together: X = [XL XR] and Y = [YL YR]. A diagram of the
process of GPISLR is illustrated in Fig. 3(a). GPISLR accounts for different noise
parameters for each sensing modality by implementing an input-dependent noise
process, i.e. heteroscedastic, similar to [11]. Let σ2 ∈ Rn be the noise variances for
n given sensing modalities. The predicted distributions become:
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Fig. 3 The two alternative fusion processes: GPISLR (a) and GPISL∗R∗ (b).

f̄∗ = k∗T (K +H)−1Y (5)
V[ f∗] = k(x∗,x∗)− k∗T (K +H)−1k∗ (6)

where H = diag(σ1
2(X1),σ2

2(X2)...σn
2(Xn)) is a non-fixed noise matrix.

3.5 Alternative Fusion Method: GPISL∗R∗

In the alternative fusion approach we propose, GPISL∗R∗ (see Fig. 3(b)), we first
estimate the object surface from raw laser points and from raw radar points sepa-
rately, using two independent GPIS (i.e. GPISL and GPISR). We then query a set
of points, XL∗ and XR∗ , which are randomly sampled from the points where f̄L∗ = 0
and f̄R∗ = 0 respectively, along with the corresponding variances, VL∗ and VR∗ . The
number of points in XL∗ and XR∗ is two times the original number of input points
(i.e. in XL and XR). Associated constraints YL∗ and YR∗ are computed from the es-
timated surfaces f̄L∗ and f̄R∗ . The next step is to compute the final estimate using
GPISL∗R∗ , with inputs: X = [XL∗ XR∗ ] and Y = [YL∗ YR∗ ]. The predicted uncertainties
of VL∗ and VR∗ are integrated in the final GPIS as fixed noise parameters. We sub-
stitute H in Eqs. (5) and (6), with H = diag(HL∗ ,HR∗), where HL∗ is a fixed noise
matrix, defined by the variances VL∗ as HL∗ = diag(VL∗1 ,VL∗2 ...VL∗m), and, simi-
larly, HR∗ = diag(VR∗1 ,VR∗2 ...VR∗p). m and p represent the number of points in XL∗
and XR∗ , respectively.

GPISL∗R∗ can be used to fuse two continuous surface estimates with uncertain-
ties. Therefore, it may allow for a consistency check between the laser and radar
perception prior to fusion. The data that passes this test should be fused to obtain a
refined estimate, while the inconsistent data should not be fused. The implementa-
tion of this consistency check is left to future work.
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4 Experimental Setup

4.1 Data Collection

Experiments were conducted with the Argo UGV (Fig. 2), used as a data collec-
tion platform. The Argo is equipped with a laser range finder, a mm-wave radar,
and a cm-accuracy 6-DOF dGPS/INS localisation unit. The laser sensor is a Sick
LMS-291 (range resolution: 0.01m and angular resolution: 0.25◦) and the radar is
a 94 GHz Frequency Modulated Continuous Wave (FCMW) radar, custom-built at
ACFR (range resolution: 0.2m and angular resolution: 2◦). The laser and radar were
directed at the front of the vehicle with a constant nodding angle, so that the cen-
ter of the beam intersected the ground at a look-ahead distance of approximately
11.4m. The sensor data, along with the navigation data, were collected by the plat-
form while it was moving around a rural environment. Consequently, the errors in
the resulting 3D points were the result of the combination of 3 error sources: sensor
noise, calibration and localisation. A detailed description of the platform, sensors
and the datasets can be found in [9]. In particular, objects of different geometries
(listed in Table 1) were partially scanned by the sensors on the UGV from distances
varying from 2m up to 30m and used to evaluate the performance of the surface
reconstruction techniques.

Table 1 List of objects, sizes and number of ground truth points.
Object Comp. Car Wall Wall2 Trailer Pole Pole2 Fence

Dim. (m3) 3.3x1.7x1.4 2.9x2.8x2.0 14x3.1x1.7 9.0x2.5x9.0 4.6x4.6x0.4 0.4x0.4x0.4 0.4x0.4x0.4 4.5x4.5x4.5
Nb. Pts. 7,958 22,736 16,738 15,584 18,784 2,578 1,032 6,470

4.2 Data Pre-processing

Sampling

Manual 
Segmentation

Sampling

GT

Normal 
EstimationR

Normal 
Estimation

XR,YR

XL,YL

Find 
Peaks

L

Transformation 
to GF 

Transformation 
to GF 

Crop 
Data

Constraints 
Estimation

Constraints 
Estimation

Fig. 4 Data Preparation Process.

The data pre-processing follows the process described in Fig. 4. The data pro-
vided by the laser sensor consist of a single range value for each bearing angle in
its scan, which are the result of the target extraction developed by the sensor man-
ufacturer. The raw radar data consist of multiple range values, with corresponding
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intensities, for each bearing angle in its scan (note that the radar beam is much larger
than the laser’s). The extraction of the targets from the noise in the data is achieved
using the approach presented by the authors in [4]. We first extract peaks (i.e. lo-
cal maxima) for each bearing angle. Most robotics applications only consider the
highest peak (global maxima) as a target detected by the radar, thereby using the
radar as a laser. However, this leads to the loss of useful information contained in
the rest of the radar beam. Therefore, along with the highest peaks, we also extract
local maxima that correspond to secondary targets by using an adaptive intensity
threshold [4]. The result is a set of 3D points per scan, similar to a the data provided
by a multi-echo laser sensor.

Laser and radar raw scans are then cropped to only keep data where the two
sensors’ FOVs overlap. Laser and radar points are then transformed into a common
global navigation frame (GF). This transformation is obtained by combining the
output of a prior extrinsic sensor calibration (using the technique in [16]) with the
localisation of the Argo. The object of interest is then manually segmented from the
full point cloud obtained with each sensing modality. A segmented object is a dense
3D point cloud, scanned from different perspectives. To evaluate the performance of
the object reconstruction techniques, a small set of 5% of the data points is randomly
sampled from the object. The rest of the laser data (i.e. 95% of the point cloud),
constituting a dense point cloud, is used to build a ground truth (GT) (see Sec. 4.3).

For each sampled observation provided by the range sensor, the normal to the
surface of the object at that point, Ni, is approximated by the perpendicular to the
segment between this point and the closest point in the same scan. Points inside and
outside the surface are computed using the normal value constraints [15]. We place
two points on Ni: one outside the object at a given distance d = −0.5m from the
surface, and one inside at a distance d = 0.2m (see Fig. 5). In the GPIS, these points
constitute positive ( f (x) = 1) and negative ( f (x) = −1 ) constraints, respectively,
and populate XL,YL and XR,YR which are used as input data of the GPIS, for the
laser and radar, respectively.

Fig. 5 The positive and negative constraints, given range sensor observations (red dots). The noise-
free observations are assumed to be on the surface, represented by the dashed line.



Laser-Radar Data Fusion with Gaussian Process Implicit Surfaces 9

4.3 Ground Truth (GT)

To quantify the errors made in the reconstructions, we used 95% of the full-
resolution laser point cloud to obtain ground truth data, since the laser is the most
accurate sensor available in our system. In this paper, the mean distance between
any point in the full resolution point cloud and its closest neighbour was 3cm. In
some cases, due to the limitations of laser sensing, this dense point cloud of the
object has to be corrected or completed to better reflect the actual surface of the
object. For example, the side windows of the car shown in Fig. 8(a) were poorly
represented (see Fig. 8(b) before correction), since the laser did not provide many
returns from the windows surface. Therefore, points on the windows were manually
added to complete the ground truth, using a resolution and noise level comparable
to those of the original point cloud.

5 Experimental Results

5.1 Single-Sensing-Modality GPIS

Surfaces were estimated from laser (XL) and radar (XR) data separately, using the
GPISL and GPISR processes described in Sec. 3.3. We evaluated the surfaces ob-
tained with different resolutions of input data, and with the different covariance
functions mentioned in Sec. 3.2. For all evaluations herein we queried the GPIS us-
ing a 3D grid of points (see x∗ in Fig. 1) uniformly spaced at a resolution of 1cm.
In each of the 3D grid cells, values where f (x∗) = 0 were selected to represent the
surface estimate. An example of a 3D surface reconstruction generated using GPIS
with 376 input points is showed in Fig. 6. From a limited number of points, the
general geometry of the object was recovered. A quantitative evaluation of the ac-
curacy of surface estimates was performed by computing the 3D distances between
points extracted from the estimated surfaces and our ground truth (the full resolution
laser point cloud). Error statistics for each object were then obtained by calculating
the root mean square (RMS) of these distances, providing an RMS error (RMSE)
for each object. The analysis was performed for all 8 objects we considered, but
for conciseness, we only show the RMSE for the different surface estimates of the
compressor, in Fig. 7.

With an RMSE of 0.069m and 0.125m for laser and radar GPIS surfaces respec-
tively, the exponential covariance function outperforms (γ = 1 in Eq. (4)) all the
other kernels. Furthermore, the RMSE decreases as more sampled points are used,
until the error does not change significantly.

Surface estimates obtained with GPISL are more accurate than with GPISR. This
was expected considering the higher accuracy and resolution of the laser sensor (see
Sec. 4.1. However, in some cases radar surfaces showed an extended coverage of
the object compared with laser surfaces. For example, Fig. 8(c) shows that most
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(a) Visual Image (b) Ground truth, coloured by el-
evation.

(c) Left: Input laser points, coloured by elevation. Right: GPISL surface.
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Fig. 6 Surface reconstruction of the compressor from sparse laser data. (a) Visual image of the
compressor. (b) Full resolution 3D laser point cloud, used as ground truth only. (c) Surface esti-
mated by GPISL (right) using 376 input laser points (left). The surface is coloured by uncertainty
(variance), using the colour scale shown in (d).
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(a) RMSE with GPISL
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(b) RMSE with GPISR

Fig. 7 RMSE of the compressor surface estimates obtained with GPISL (a) and GPISR (b) for
different kernels and input point densities. Note the different scales of the errors obtained (larger
errors with radar data).

parts of the car are quite well modelled by GPISL, but the surfaces of the windows
are incomplete, since they are partially transparent to laser sensing. On the other
hand, the radar perception of these windows is more complete, resulting in a more
complete representation using (GPISR) (Fig. 8(e)).
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(a) Visual Image. (b) Full laser point cloud, coloured by
elevation.

(c) Left: Input laser points, coloured by elevation. Right: GPISL surface.
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(e) Left: Input radar points, coloured by elevation. Right: GPISR surface.
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Fig. 8 Surface reconstruction of the car (a) using sparse laser or radar data. (b) Full resolution
laser point cloud, used to build the ground truth data (shown before correction of the windows).
(c) Surface estimated by GPISL and (d) Surface estimated by GPISR. 1136 input points are used
in each case. The surfaces are coloured by variance. Note the difference in scale between the
variances for GPISL and GPISR, the latter showing higher uncertainty overall. The edges of the car
show high uncertainty since the car was only partially observed by both sensors.

5.2 Laser-Radar Data Fusion

Laser and radar data were fused using the GPISLR and GPISL∗R∗ fusion methods
described above. Table 2 shows the RMSE obtained using different covariance func-
tions to estimate the surface of the compressor. The most accurate results seem to
be obtained with the exponential kernel. However, the improvement is relatively in-
significant, in particular for the GPISL∗R∗ method, whose accuracy is consistently
the highest. We evaluated the performance of surface estimation on the 8 different
objects listed in Table 1 using each GPIS method considered in this paper. Fig. 9(a)
shows the RMSE for each surface estimate obtained using the exponential covari-
ance function. As an example, Fig 10 shows the estimated surface of the car using
GPISL∗R∗ . The estimation of the surfaces of the compressor, the car and the second
pole (Pole2) were significantly improved by the fusion (GPISLR). In addition, fur-



12 Marcos P. Gerardo-Castro, Thierry Peynot and Fabio Ramos

Table 2 RMSE (in m) obtained for the compressor using different covariance functions.

GPISL GPISR GPISLR GPISL∗R∗

SqExp 0.074 0.134 0.071 0.063
Exp 0.069 0.125 0.064 0.060
Mat3 0.071 0.132 0.069 0.063
Mat5 0.074 0.134 0.071 0.063

Compressor Car Wall Wall2 Trailer Pole Pole2 Fence
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(a) Global errors for all objects (b) Local errors (car win-
dows).

Fig. 9 (a) RMSE (in m) obtained using the different GPIS methods to estimate the surfaces of all
8 objects. (b) Local analysis of the RMSE in the area of the car windows, shown in Fig. 10. The
black error bars represent the standard deviation.

ther improvement was obtained using the alternative fusion method (GPISL∗R∗ ). The
trailer was not significantly better represented by the state-of-the-art fusion method
(GPISLR), however, the improvement is clearer when using (GPISL∗R∗ ). For the
other objects, such as the walls, the improvements are less significant. To better
illustrate some of the benefits of the laser-radar fusion, Fig.9(b) proposes a local
analysis of the errors obtained with the car, focussing on the area of the windows
(see white box in Fig. 10). These results show that due to the poor perception of
the windows by the car, the accuracy of the surface estimation was particularly im-
proved by the laser-radar fusion process.

6 Conclusion

In this paper, we proposed an experimental analysis of the performance of continu-
ous 3D surface reconstruction from laser and mm-wave radar data using Gaussian
Process Implicit Surfaces, in a realistic field robotics scenario. We evaluated the
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(a) Surface estimated by GPISL∗R∗ .
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Fig. 10 Surface of the car (seen in Fig. 8(a)), reconstructed using sparse laser and radar data
(1136 points) fused with the GPISL∗R∗ method. The surface is coloured by uncertainty, with low
uncertainty shown in blue (see corresponding colour bar in (b)). Note that the windows of the car
were correctly reconstructed, with low uncertainty and no holes. The white box delimitates the area
used to perform the local analysis of errors in the area of the windows.

performance of single-sensor approaches with different resolutions of input data
and different kernels. We also compared the performance of these approaches with
a state-of-the-art fusion approach and a new alternative method to multi-sensor data
fusion. The GPIS fusion showed a significant improvement of the surface represen-
tations, especially when taking advantage of the complementarity of the two sensor
modalities (e.g. in the case of the car windows, consistently detected by the radar
but not by the laser). The proposed fusion process GPISL∗R∗ outperformed the state-
of-the-art fusion method.

The next step of this work will be to implement a test within the GPISL∗R∗ frame-
work to validate the consistency between the estimates obtained using laser and
radar perception separately, prior to fusion. This will allow for higher resilience in
challenging conditions, when laser and radar may not detect the same targets (e.g.
in the presence of airborne dust, as in [4]). In this paper, the 3D data were manu-
ally segmented before applying the GPIS approaches. A direct extension will be the
integration of automatic data segmentation in the same framework, or by analysing
large scale environmental datasets rather than pre-segmented objects. In addition,
the heterocedasticity treatment can be extended to sets of scans rather using a single
noise parameter for all the points provided by each sensing modality.
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