
Kernel Embeddings of Longitudinal Data

Darren Shen(B) and Fabio Ramos

School of Information Technologies, University of Sydney, Sydney, Australia
{darren.shen,fabio.ramos}@sydney.edu.au

Abstract. Longitudinal data is the repeated observations of individuals
through time. They often exhibit rich statistical qualities, such as skew or
multimodality, that are difficult to capture using traditional parametric
methods. To tackle this, we build a non-parametric Markov transition
model for longitudinal data. Our approach uses kernel mean embeddings
to learn a transition model that can express complex statistical features.
We also propose an approximate data subsampling technique based on
kernel herding and random Fourier features that allows our method to
scale to large longitudinal data sets. We demonstrate our approach on
two real world data sets.

1 Introduction

The study of longitudinal data plays an important role in medicine and social
sciences. Their defining characteristic is the repeated observation of outcomes for
a group of individuals over time. Unlike cross-sectional studies, which only pro-
duce a single snapshot in time, longitudinal studies use repeated measurements
to produce paths or trajectories through time. These trajectories are invaluable
for studying how variables change over time. For example, a longitudinal study
of the protein content of cow milk can reveal patterns about the effect of cow
diet on milk over time.

Although longitudinal data can be very informative, they require careful
statistical treatment because repeated observations from the same individual are
often correlated. For example, the dosage of drugs given to patients undergoing
medical treatment affects the severity of the disease, which in turn affects the
dosage. Ignoring this correlation can lead to invalid inferences, so robust models
for longitudinal data need to account for this effect.

One way to capture intra-subject correlation is to use a transition model,
which describes how an observation relates to past observations. Suppose, for
each individual i, we have a sequence of ni observations Yi1, . . . , Yini

. A transition
model assumes that the j-th observation Yij of individual i is a function of p
previous observations Yij−1, . . . , Yij−p from the same individual. If we model the
relationship with past observations as a probability distribution, then we obtain
an order-p Markov model for each trajectory:

P (Yi1, . . . , Yini
) = P (Yi1)

ni∏

j=2

P (Yij | Yij−1, . . . , Yij−p). (1)

c© Springer International Publishing AG 2016
B.H. Kang and Q. Bai (Eds.): AI 2016, LNAI 9992, pp. 495–506, 2016.
DOI: 10.1007/978-3-319-50127-7 42

496 D. Shen and F. Ramos

(a) Longitudinal data (b) Ground-truth

(c) Gaussian process model (d) Kernel embeddings model

Fig. 1. Example of longitudinal data where transitions are bimodal. (a) Spaghetti plot
of the trajectories. (b) Ground-truth transition model P (Yij | Yij−1) for each value of
Yij (y-axis) and Yij−1 (x-axis). (c) Contour plot of transition model learned using a
Gaussian process. (d) Contour plot of transition model learned using our method of
kernel embeddings.

Traditional methods for learning the transition model P (Yij | Yij−1, . . . , Yij−p)
usually make parametric assumptions that restrict the expressiveness of the
model. For instance, consider an order-1 Markov transition model with real-
valued observations Yij = sign(uij)(0.9Yij−1 + vij), where uij , vij ∼ N (0, 1).
Figure 1a shows 100 trajectories generated using this model. Because sign(uij)
flips the sign of the state with 50% chance, the transition process is bimodal (see
Fig. 1b). Figure 1c and d compares the transition model learned using a Gaussian
process, with the one learned using our approach based on kernel mean embed-
dings. When we condition on a particular previous state Yij−1 by slicing the
contours vertically, we can see that the Gaussian process produces a normal dis-
tribution, which cannot account for the bimodality. In fact, the Gaussian process
can only explain the bimodality by treating it as observation noise. On the other
hand, each vertical slice in our method produces a distribution that faithfully
reflects the characteristics of the data.

Kernel Embeddings of Longitudinal Data 497

Our first contribution is a nonparametric Markov model for longitudinal data.
By embedding observations into a reproducing kernel Hilbert space, we can learn
the transition model from data without parametric assumptions, giving us free-
dom to model transitions with complex statistical features. We also propose an
efficient data subsampling method based on a random Fourier features approx-
imation of the method in [1]. The algorithm selects a representative subset of
training points so that training on the subset gives comparable performance to
training with the full data set. Our method finds m subsamples in O(nmD) time
and O(nD) storage, where D is a parameter. This makes it possible to accurately
model large longitudinal data sets without significant computational cost.

2 Related Work

Transition models applied to longitudinal data are typically parametric linear
models (such as autoregressive processes). Although these methods can be eas-
ily interpreted, they are a poor fit for complex longitudinal data such as the
trajectories of vehicles because of nonlinearity or multimodality in the transi-
tion process. Most nonparametric methods for longitudinal data such as splines
and kernel density estimation1 do not have strong theoretical guarantees when
approximating probability distributions.

A related model is the state-observation model, where observations are gen-
erated by a sequence of hidden states. Our setting can be seen as a special case
where the observations are noiseless. Several nonparametric methods based on
kernel embeddings have been applied to these models [1,3]. In particular, [1] uses
subsampling with kernel herding as a way to speed-up their method. The cost
of this preprocessing step is, however, quadratic in the number of data points,
which makes it infeasible to run on large data sets. Our method is a scalable
alternative that focuses specifically on the noiseless observation case.

3 Kernel Embeddings

We briefly review kernel mean embeddings before applying it to longitudinal
data. [5] offers a great exposition on the theory and its applications.

3.1 Kernel Mean

A kernel2 kX : X × X → R defined on a measurable space X induces a unique
Hilbert space HX of functions called a reproducing kernel Hilbert space (RKHS).
It is thus named because its inner product 〈·, ·〉HX satisfies the reproducing prop-
erty f(x) = 〈f, kX (·, x)〉HX for all f ∈ HX and x ∈ X , where kX (·, x) is the
function kX with one of its parameters fixed at x.
1 KDE is a closely related method, but we only use positive-definite kernels. Without

this requirement, we lose all the theoretical benefits discussed in this paper.
2 A positive definite kernel (or just a kernel) kX defined on a measurable space X satis-

fies
∑n

i=1

∑n
j=1 cicjkX (xi, xj) ≥ 0 for any n ∈ N, c1, . . . , cn ∈ R, and x1, . . . , xn ∈ X .

498 D. Shen and F. Ramos

Let X be a random variable on X with distribution P (X). The framework of
kernel embeddings revolves around mapping P (X) to its corresponding kernel
mean in HX using:

μ[P (X)] = EX [kX (·, x)] =
∫

X
kX (·, x) dP (X). (2)

A key advantage of this particular mapping is that it is injective for characteristic
kernels [2]. In other words, all statistical features of the distribution are preserved
by this mapping. The most commonly used characteristic kernel is the Gaussian
kernel kγ(x, x′) = exp(−γ‖x − x′‖2), where γ is a parameter. We will focus on
the Gaussian kernel throughout this paper.

This formulation, however, requires P (X) to be known explicitly, which is
rare in practical problems. Suppose we only have samples from P (X) and we
wish to estimate P (X). We can do this by estimating its kernel mean μ[P (X)]
instead. Let {xi}n

i=1 be n samples drawn i.i.d. from P (X), then the empirical
kernel mean is defined to be the sample average,

μ̂[P (X)] =
1
n

n∑

i=1

kX (·, xi). (3)

If the Rademacher complexity of P (X) and HX is bounded by O(n−1/2), the
distance ‖μ̂[P (X)] − μ[P (X)]‖ in the RKHS HX converges to zero at a rate of
O(n−1/2) with high probability [2]. Since this convergence rate is independent
of the dimensionality of X , kernel embeddings works well in high dimensions.

3.2 Conditional Kernel Mean

We now focus on the kernel mean of conditional distributions, which forms the
foundation of our method. Let X and Y be random variables over measurable
spaces X and Y, respectively. Given kernels kX and kY on X and Y, respectively,
the embedding of μ[P (Y | x)] is defined as,

μ[P (Y | x)] = EY |x[kY(·, y)] =
∫

Y
kY(·, y) dP (Y | x). (4)

Given i.i.d. samples {(xi, yi)}n
i=1 from the joint distribution P (X,Y), the empir-

ical estimate of Eq. 4 is given by the weighted sum [3]:

μ̂[P (Y | x)] =
n∑

i=1

wikY(·, yi), (5)

where wi = ((K + nεnIn)−1kx)i. K is the Gram matrix (kX (xi, xj)) ∈ R
n×n,

In is the n × n identity matrix, kx is the vector (kX (x, xi)) ∈ R
n, and εn is

a regularisation parameter to reduce overfitting. The empirical kernel mean of
marginal distributions from Eq. 3 is simply a special case of Eq. 5 with uniform
weights wi = 1/n. Indeed, non-uniform weights capture the effect of conditioning
on X = x. When εn decreases at an appropriate rate as n → ∞, this empirical
embedding converges to the true conditional distribution, albeit at a slower rate
than the marginal case [3].

Kernel Embeddings of Longitudinal Data 499

4 Kernel Embeddings of Longitudinal Data

We now show how we can apply kernel embeddings specifically to longitudinal
data. The mapping between kernel embeddings and our setting is summarised
Table 1. As we can see, the mapping is straightforward, but there are some
simplifying assumptions, which we discuss below:

1. We use an order-1 Markov model with each observations in R
d. Hence, the

model predicts the current observation Y given only the previous observation
X. Since both X and Y represent observations, we can use the same space and
kernel for both variables. We can extend our discussion to higher order Markov
models by setting X to be the product space of multiple past observations
and defining an appropriate kernel over that space.

2. We assume that transition probabilities are independent of time and the indi-
vidual. This allows us to train a single transition model using all the data. We
can relax this assumption by training separate transition models for different
time measurements or different groups of individuals (e.g. separate models
for male and female). This can reduce the variance of each model, but at the
cost of less training data.

3. We focus on the Gaussian kernel kγ(x, x′) = exp(−γ‖x − x′‖2) because it is
widely used and has useful theoretical properties in the RKHS. Using other
kernels is possible, but we lose some theoretical guarantees.

Table 1. Mapping between the general framework of kernel embeddings in Sect. 3 and
our problem setting of longitudinal data.

Kernel embeddings Our setting Meaning in our setting

X ∈ X X ∈ R
d Previous observation

Y ∈ Y Y ∈ R
d Current observation

{(xi, yi)}n
i=1 {(xi, yi)}n

i=1 Transition model examples

P (Y | X) P (Y | X) Transition model

kX (x, x′) kγ(x, x′) = exp(−γ‖x − x′‖2) Kernel on previous observation

kY(x, x′) kγ(x, x′) = exp(−γ‖x − x′‖2) Kernel on current observation

4.1 Embedding the Transition Model

To estimate the kernel mean of the transition model P (Y | X), we first need to
extract training samples from the trajectories. For each trajectory i, we can use
consecutive observation pairs {(Yij−1, Yij)}ni

j=2 as samples from the transition
model. We can then combine the sample pairs from every trajectory to form the
full set of training pairs which we denote as {(xi, yi)}n

i=1. If we have t trajectories,
then we have in total n =

∑t
i=1(ni − 1) training examples. Substituting these n

observation pairs into Eq. 5 gives us an estimate μ̂[P (Y | X)] of the transition
model in the RKHS.

500 D. Shen and F. Ramos

4.2 Estimation of Embedding Statistics

In order to use the embedding μ̂[P (Y | X)] for probabilistic inference, we need
to extract statistical information from it. Unfortunately, recovering the full con-
ditional distribution that maps to the embedding is difficult (since it may not
even exist). Typical methods assume that the distribution is a mixture and solve
a quadratic program to find the mixture parameters [4]. These methods are time
consuming and require the number of mixture components a-priori.

Fortunately, when we use Gaussian kernels, various statistics of an embedding
in the form of Eq. 5 can be estimated by exploiting the reproducing property [6].
Notably, a consistent estimator of the density p(y0 | x) at Y = y0 is given by,

p(y0 | x) =
n∑

i=1

wiJy0,h(yi), (6)

where Jy0,h(·) is a Gaussian smoothing kernel centred at y0 with bandwidth h:

Jy0,h(y) =
1

πd/2hd
exp(−‖y − y0‖2/h2). (7)

If any of the weights in Eq. 6 are negative, however, the density may be negative,
so we may not be able to use this directly. We follow [4] by clipping negative
weights at zero and renormalising them to get new weights w∗

1 , . . . , w
∗
n so that

Eq. 6 forms a valid density:

w∗
i =

max(wi, 0)∑n
j=1 max(wj , 0)

. (8)

Using these new weights may be justified as follows. Assume y1, . . . , yn are
unique. As h → 0, Jy0,h(y) becomes the Dirac delta δ(y0 − y). When we set
y0 to be a training sample yk, the right hand side of Eq. 6 reduces to just wk.
This implies that wk is a consistent estimator of a density, which is nonnegative
in the limit. Using a similar argument [1], we also can show that

∑n
i=1 wi is a

consistent estimator of 1. Hence, in the limit of n → ∞ and h → 0, all weights
are nonnegative and sum to 1, so the modified weights are the same as the true
weights and we obtain the true density.

4.3 Summary of the Algorithm

The full algorithm takes a set of trajectories as input. We first extract ordered
pairs of observations {(xi, yi)}n

i=1 from the trajectories as samples from the tran-
sition process. We can then use Eq. 5 to get the weights of the predictive embed-
ding conditioned on a given previous observation. To speed up prediction over
many different previous observations, we can precompute ρ = (K + nεnIn)−1

since it doesn’t depend on the previous observation. Then, to make a prediction,
we simply compute kx and multiply with ρ to get the weights of the predictive
embedding. We can then recover the density of the predictive distribution using
Eq. 6 with the transformed weights from 8. We can tune the hyperparameters γ
and εn using cross-validation. We set the bandwidth h to be 1/γ. The complete
pseudocode is given in Algorithm 1.

Kernel Embeddings of Longitudinal Data 501

Algorithm 1. Learning and prediction of the transition model.
1: function Learn-transition-model(γ, {y1j}n1

j=1, . . . , {ytj}nt
j=1)

2: Extract training pairs {(xi, yi)}n
i=1 from trajectories.

3: Compute Gram matrix K ∈ R
n×n where Kij = exp(−γ‖xi − xj‖2).

4: return {(xi, yi)}n
i=1 and ρ = (K + nεnIn)−1 ∈ R

n×n.
5: end function
6:
7: function Predict-transition-model(γ, {(xi, yi)}n

i=1, ρ, x)
8: Compute kx ∈ R

n where the i-th entry is exp(−γ‖x − xi‖2).
9: Compute prediction weights w = (w1, . . . , wn) = ρkx ∈ R

n.
10: return new weights w∗

i = max(wi, 0)/
∑n

j=1 max(wj , 0).
11: end function

5 Reducing the Computational Cost

The bottleneck of our method is computing the inverse ρ = (K +nεIn)−1, which
takes O(n3) naively. We reduce this cost in two ways: a Nyström approximation
of K, and a data subsampling method based on kernel herding [1].

5.1 Nyström Approximation

A common technique to compute ρ faster is to approximate K with a low rank
matrix. The Nyström method first samples r data points x̂1, . . . , x̂r ∈ X and then
approximates K with the matrix K̃r = CW †

r C�, where C = kγ(xi, x̂j) ∈ R
n×r,

Wr = kX (x̂i, x̂j) ∈ R
r×r and W †

r denotes the pseudo-inverse of Wr. The samples
x̂1, . . . , x̂r can be selected in many ways. We found that running k-means on the
data points and using the cluster centers as the samples worked very well. Once
we compute K̃, we can use the Woodbury identity to approximate ρ as,

ρ =
1

nεn

(
In − C(nεnIr + W †

r C�C)−1W †
r C�) ∈ R

n×n, (9)

where the matrix inversion in this expression is on a r × r matrix, rather than a
n × n matrix. This reduces the cost of computing the weights to O(n2r).

5.2 Subsampling with Kernel Herding

Even with the Nyström approximation, our algorithm still takes quadratic time
in the number of data points, which makes it difficult to scale to large longitu-
dinal data sets. A typical technique for reducing computational cost is to only
train on a small random subset of the data. The problem of this approach, how-
ever, is that it is “too random”, so the subset is unlikely to be representative of
the original data.

A better approach is to pick representative data points that preserves the
“information” in the original data. Since we are working in a RKHS, a natural
definition of “information” is the joint embedding of the data in the RKHS [1].

502 D. Shen and F. Ramos

Like before, let X and Y be random variables on R
d with a common Gaussian

kernel kγ(·, ·). The empirical joint embedding of samples {(xi, yi)}n
i=1 from

P (X,Y) is given by,

μ̂[P (X,Y)] =
1
n

n∑

i=1

k(×)((·, ·), (xi, yi)), (10)

where k(×)((·, ·), (xi, yi)) is the product kγ(·, xi)kγ(·, yi). In other words, we
wish to find a subset {(x̄p, ȳp)}m

p=1 of the training data such that the empir-
ical joint embedding of the subset is close to that of the original. Let si =∑n

j=1 k(×)((xi, yi), (xj , yj)) and s̄ip =
∑p−1

j=1 k(×)((xi, yi), (x̄j , ȳj)). A greedy
approach to pick each subsample was devised in [1]:

(x̄1, ȳ1) = arg max
(xi,yi)∈D

1
n

si (11)

(x̄p, ȳp) = arg max
(xi,yi)∈D

1
n

si − 1
p
s̄ip. (12)

Intuitively, the term si favours samples that are representative of the full data set,
while s̄ip penalises samples that are too close to previous subsamples. Obtaining
m subsamples takes O(n2m) time. Unfortunately, this is not very useful since
subsampling has the same cost as running Nyström on the full data.

The main bottleneck of this algorithm is computing si, which is a O(n)
summation. Using random Fourier features [7], we can approximate si in O(D)
time, where D is the number of random features. For a Gaussian kernel kγ(·, ·),
there exists a random feature map zd : R

d → R
D such that the dot product

〈zd(x), zd(x′)〉 converges to kγ(x, x′) when D is large:

zd(x) =

√
2
D

[cos(ω�
1 x + b1), . . . , cos(ω�

Dx + bD)]�, (13)

where ω1, . . . ,ωD ∈ R
D are vectors with entries drawn from N (0, 2γ) and

b1, . . . , bD ∈ R are drawn uniformly on [0, 2π).
To approximate si, we need a random feature map for k(×). Since this kernel

is the product of two Gaussian kernels, k(×)((xi, yi), (xj , yj)) is just the Gaussian
kernel kγ([xi; yi], [xj ; yj]) on R

2d where [xi; yi] ∈ R
2d is the concatenation of xi

and yi. We can then use a neat trick to approximate si:

si =
n∑

j=1

kγ([xi; yi], [xj ; yj]) (14)

≈
n∑

j=1

〈z2d([xi; yi]), z2d([xj ; yj])〉 (15)

= 〈z2d([xi; yi]),
n∑

j=1

z2d([xj ; yj])〉 (16)

� 〈z(i),u〉. (17)

Kernel Embeddings of Longitudinal Data 503

Algorithm 2. Kernel Herding Subsampling using Random Features.
1: function Fast-Herding-Subsample(γ, {(xi, yi)}n

i=1)
2: Compute feature maps z(i) ∈ R

D for all i using Eq. 13.
3: Compute the mean feature map: u =

∑n
i=1 z

(i) ∈ R
D.

4: Initialise ū ∈ R
D be the zero vector.

5: for p = 1 to m do
6: (x̄p, ȳp) = arg max

(xi,yi)∈D
1
n
〈z(i),u〉 − 1

p
〈z(i), ū〉.

7: Update ū ← ū + z2d([x̄p; ȳp]).
8: end for
9: return {(x̄p, ȳp)}m

p=1.
10: end function

The key advantage of this approximation is that we only need to compute z(i)

and u once, so si can be computed with a O(D) dot product instead of a O(n)
sum. The same idea applies to s̄ip. The pseudocode is given in Algorithm2.

6 Experiments

We tested our algorithm in two real world data sets against other probabilistic
methods that can learn a transition model. Both data sets have non-Gaussian tran-
sition models. To measure the performance of each algorithm, we first extracted
pairs of observations from every trajectory and then performed 5-fold cross-
validation on all the observation pairs. Hence, each algorithm uses a subset of the
data to learn a transition model, which is then tested on unseen data.

For each test fold, we measured the mean negative log-likelihood (NLL) of
the unseen data. For a set of test pairs {(xi, yi)}n

i=1, the mean NLL is given
by − 1

n

∑n
i=1 log p(yi | xi). The lower this is, the more accurately the method

generalises to test data.

6.1 NLSY97 PIAT Data

We extracted a subset of the National Longitudinal Study on Youths (NLSY97)
data set containing annual results on a scholastic achievement test results called
the Peabody Individual Achievement Test (PIAT). The data set contains test
results for around 6000 individuals from 1997–2002. There were plenty of missing
data, so the number of training pairs was only around 6000. This effect was
prominent in the year 2002, where the number of data points was less than half
of the previous year. We normalised the scores to be between 0 and 1.

We tested our kernel embeddings approach without any approximation
(KME-Exact). We also tested the approximate method (KME-Approx) by
first selecting m = 200 subsamples from kernel herding with D = 50 random
features, and then selecting r = 100 K-means cluster centres for the Nyström
approximation. We tuned the hyperparameters by maximising the likelihood
from cross-validation. More specifically, for each value εn ∈ {1.0, 0.1, 0.01}, we

504 D. Shen and F. Ramos

Table 2. Cross-validation results for the PIAT data set. The 1st interval counts the %
of test points that lie between the 0th and 25th percentile, and so on.

Method NLL 1st (%) 2nd (%) 3rd (%) 4th (%)

AR(1) −0.67 ± 0.04 17.6 ± 1.6 34.0 ± 0.9 28.5 ± 0.8 19.9 ± 1.1

GP −0.70 ± 0.03 18.6 ± 2.1 34.8 ± 1.8 27.7 ± 1.0 19.0 ± 1.3

KME-Exact −0.87 ± 0.03 22.1 ± 1.9 28.2 ± 1.4 27.4 ± 0.8 22.3 ± 1.2

KME-Approx −0.74 ± 0.04 19.4 ± 2.3 32.7 ± 1.6 28.4 ± 1.9 19.5 ± 1.5

(a) PIAT trajectories (b) Transition model (c) Predictive distributions

Fig. 2. (a) Trajectories in the PIAT data set. (b) Contour of the transition model
learned using our exact method on a 2000 data point subset of the PIAT data.
(c) The predictive distribution conditioned on three different previous observations
X = 0.25, 0.5, 0.75 (i.e. vertical slices of the contour). The solid and dashed line shows
the densities of our predictive distribution using the exact and approximate methods,
respectively.

used a 1D optimiser to tune γ. We found that this worked better than using 2D
optimisation on both parameters with numerical gradients.

To compare, we trained an order-1 autoregressive model using ordinary least
squares. We also trained a Gaussian process with a RBF kernel using the GPy
library [9]. We optimised the hyperparameters (kernel variance and lengthscale,
noise variance) by maximising the marginal likelihood of the data.

For each algorithm, we obtained their mean NLL on cross-validation as pre-
viously described. We also divided the predictive distributions of each method
into four intervals that each have 25% of the total probability mass (i.e. the first
interval is the mass between the 0th and 25th percentile, and so on). We then
counted how many of the unseen points lie in each interval. The closer each of the
four counts are as close to 25%, the better the predictive distribution matches
the shape of the data. Table 2 reports the results for this data set.

In terms of log-likelihood, kernel mean embeddings outperformed AR(1) and
GP. AR(1) performed worse than GP because it is a linear classifier, so it not
as expressive as Gaussian processes which are nonlinear. KME-Approx was
comparable to GP, even though it used only 200 subsamples out of 6000 data
points. Looking at the percentile interval results, we can see that both AR(1)
and GP overconcentrated their mass in the middle because it is limited to a
normal distribution. Our method had a similar concentration of mass, but to a
lesser degree because it is not constrained by any parametric form (see Fig. 2c).

Kernel Embeddings of Longitudinal Data 505

6.2 Edinburgh Pedestrian Data

This data set contains the 2D trajectories of pedestrians walking through an
area in the University of Edinburgh [8]. We used trajectories from a single day
(Aug 24), which had 664 trajectories and 76,260 data points. The movements
of pedestrians are inherently Gaussian, which is not particularly interesting.
Hence, for each trajectory i, we used observation pairs {(Yij−k, Yij)}ni

j=k+1 that
are k frames apart as data samples. This changed the task to modelling the
position of a pedestrian after k frames, which exhibits more interesting statistical
features like multimodality (see Fig. 3 for the effect of different k on our predictive
distribution). We set k = 10, which gave us around 70,000 training points. Like
the PIAT data set, we normalised the X and Y axes to be between 0 to 1.

Because the data set was so large, we could not use KME-Exact due to
memory constraints. We set m = 500, D = 50 and r = 100 for KME-Approx.
We also could not use exact GP inference, so we instead used sparse varia-
tional GP (SGP) from GPy with a RBF kernel and two outputs to obtain the
2D position. We used 100 inducing points to match the rank of the Nyström
approximation in KME-Approx, initialised using K-means cluster centres. We
optimised both the hyperparameters and the inducing point locations. Table 3
shows the mean NLL results for 5-fold cross validation on this data set.

(a) k=10 (b) k=50 (c) k=100

Fig. 3. Predictive distributions for the Pedestrian data set with different values of k.
(a) Prediction for the location of a pedestrian k = 10 frames after, if the pedestrian
started at the top left corner. (b) and (c) Predictions with larger k to predict farther
into the future.

Table 3. Cross-validation results for the Pedestrian data set.

Method NLL

KME-Approx −6.00 ± 0.05

SGP −1.44 ± 0.01

7 Conclusion

We described a nonparametric Markov model for longitudinal data where the
transition model is learned using kernel mean embeddings. This allows us to

506 D. Shen and F. Ramos

model complex longitudinal data where the transition process exhibits statistical
features such as skew and multimodality. We also proposed a random features
approximation of the data subsampling method from [1], reducing the running
time from O(n2m) to O(nmD). This subsampling method can be used to speed
up a wide variety of inference algorithms based on kernel mean embeddings.

For future work, we would like to incorporate explanatory variables by con-
sidering the distribution P (Yij | Yij−1, xij), where xij is a vector of variables
that may influence the observation Yij . An interesting research direction would
be to see if we can combine parametric models for explanatory variables with
non-parametric transition models. We would also like to see the effect of using
higher order Markov models on the performance of these methods.

References

1. Kanagawa, M., Nishiyama, Y., Gretton, A., Fukumizu, K.: Filtering with state-
observation examples via kernel Monte Carlo filter. Neural Comput. 28(2), 382–444
(2014)

2. Smola, A., Gretton, A., Song, L., Schölkopf, B.: A Hilbert space embedding
for distributions. In: Hutter, M., Servedio, R.A., Takimoto, E. (eds.) ALT 2007.
LNCS (LNAI), vol. 4754, pp. 13–31. Springer, Heidelberg (2007). doi:10.1007/
978-3-540-75225-7 5

3. Song, L., Huang, J., Smola, A., Fukumizu, K.: Hilbert space embeddings of condi-
tional distributions with applications to dynamical systems. In: Proceedings of the
26th Annual International Conference on Machine Learning, pp. 961–968. ACM,
June 2009

4. McCalman, L.R.: Function embeddings for multi-modal Bayesian inference (2013)
5. Muandet, K., Fukumizu, K., Sriperumbudur, B., Schlkopf, B.: Kernel mean embed-

ding of distributions: a review and beyonds. arXiv preprint arXiv:1605.09522 (2016)
6. Kanagawa, M., Fukumizu, K.: Recovering distributions from Gaussian RKHS

embeddings. In: AISTATS, pp. 457–465 (2014)
7. Rahimi, A., Recht, B.: Random features for large-scale kernel machines. In:

Advances in Neural Information Processing Systems, pp. 1177–1184 (2007)
8. Majecka, B.: Statistical models of pedestrian behaviour in the forum. Master’s thesis,

School of Informatics, University of Edinburgh (2009)
9. GPy: GPy: a Gaussian process framework in python. http://github.com/

SheffieldML/GPy

http://dx.doi.org/10.1007/978-3-540-75225-7_5
http://dx.doi.org/10.1007/978-3-540-75225-7_5
http://arxiv.org/abs/1605.09522
http://github.com/SheffieldML/GPy
http://github.com/SheffieldML/GPy

	Kernel Embeddings of Longitudinal Data
	1 Introduction
	2 Related Work
	3 Kernel Embeddings
	3.1 Kernel Mean
	3.2 Conditional Kernel Mean

	4 Kernel Embeddings of Longitudinal Data
	4.1 Embedding the Transition Model
	4.2 Estimation of Embedding Statistics
	4.3 Summary of the Algorithm

	5 Reducing the Computational Cost
	5.1 Nyström Approximation
	5.2 Subsampling with Kernel Herding

	6 Experiments
	6.1 NLSY97 PIAT Data
	6.2 Edinburgh Pedestrian Data

	7 Conclusion
	References

