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Abstract— This paper addresses the problem of using visual
information to estimate vehicle motion (a.k.a. visual odometry)
from a machine learning perspective. The vast majority of cur-
rent visual odometry algorithms are heavily based on geometry,
using a calibrated camera model to recover relative translation
(up to scale) and rotation by tracking image features over
time. Our method eliminates the need for a parametric model
by jointly learning how image structure and vehicle dynamics
affect camera motion. This is achieved with a Gaussian Process
extension, called Coupled GP, which is trained in a supervised
manner to infer the underlying function mapping optical flow
to relative translation and rotation. Matched image features
parameters are used as inputs and linear and angular velocities
are the outputs in our non-linear multi-task regression problem.
We show here that it is possible, using a single uncalibrated
camera and establishing a first-order temporal dependency
between frames, to jointly estimate not only a full 6 DoF motion
(along with a full covariance matrix) but also relative scale, a
non-trivial problem in monocular configurations. Experiments
were performed with imagery collected with an unmanned
aerial vehicle (UAV) flying over a deserted area at speeds of 100-
120 km/h and altitudes of 80-100 m, a scenario that constitutes
a challenge for traditional visual odometry estimators.

I. INTRODUCTION
Accurate localization is a fundamental capability in au-

tonomous navigation, where a vehicle needs to be constantly
aware of its own pose to perform tasks such as mapping
and path planning. There are basically two types of sen-
sors providing localization estimates: internal and external.
Internal sensors include encoders and IMUs, which work
isolated from the outside world and can perform well in
small-scale experiments, but tend to drift over time due to
error accumulation. External sensors include GPS, range-
finders and cameras, which interact in one way or another
with the environment around the vehicle and can provide
both incremental and absolute localization estimates.

Of all external sensors, cameras are cheap, compact, low
power, and have several other advantages that can lead
to more robust and reliable results. Visual information is
insensitive to terrain irregularities, is not restricted to any
particular locomotion method, and when used for motion
estimation can provide predictions comparable in accuracy to
most commercial IMUs [1]. Also, recent increases in com-
putational power allow real-time visual motion estimation
on standard processors, which can be further integrated with
other sensors for improved predictions.

The process of estimating vehicle pose by analyzing its
associated camera images is known as visual odometry, and
is fundamentally composed of two stages. Initially, informa-
tion from consecutive frames is extracted and correlated, as

to establish correspondences between features in overlapping
areas. If the environment is assumed static, any optical flow
detected on the images will be caused by the camera’s
own motion that can be used to infer relative rotation and
translation between frames. Most visual odometry algorithms
address this problem geometrically [2], using a calibrated
camera model to minimize the reprojection of 3D points
triangulated from matched features.

We propose an alternative approach, where a Gaussian
Process [3] is used as a regression tool to learn the underlying
function that maps optical flow information directly into
camera motion. Training data is obtained from an inde-
pendent sensor, and a likelihood function is optimized to
fit this data, where a covariance function quantifies the
relationship between inputs. Once the training is completed,
the resulting model can be used to estimate translation and
rotation between frames from visual information alone.

The benefits of this approach are threefold: First of all, it
eliminates the need for a geometrical model, or even cali-
bration parameters since vehicle motion is inferred directly
from image features. Secondly, it naturally provides a full
covariance matrix for all outputs, thus allowing posterior
data fusion with other sensors. Lastly, the resulting model
is capable of estimating the relative scale by exploring and
learning dependencies in the image structure, a non-trivial
task in monocular configurations. This approach is tested in a
challenging dataset where imagery is obtained from an aerial
platform flying at speeds of 100-120 km/h and altitudes of
80-100 m. The trajectory extends for around 20 km and is
characterised by small and inconsistent overlapping regions
between two consecutive images, lenses with very narrow
field of view and significant changes in illumination.

The remainder of this paper is organized as follows:
Section II provides a brief overview of visual odometry
algorithms and multi-task learning methods. In section III we
describe the mechanism used for optical flow extraction and
parametrization. Section IV recapitulates the principles and
fundamental equations behind Gaussian Processes, moves on
to Coupled GPs and then introduces the temporal dependency
used to increase the amount of information available for
training and inference. In Section V we present and discuss
results obtained using the proposed methodology, providing
comparisons with a standard structure-from-motion algo-
rithm. Finally, Section VI concludes the paper and discusses
future research directions.
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II. RELATED WORK

Visual information has become a viable and competitive
approach for pose estimation. It has been implemented
successfully in applications such as unmanned aerial vehi-
cles [4], underwater robots [5], space exploration [6] and
indoor/outdoor ground terrains [7], [1], [8]. Several mod-
ifications to the original scheme [9] have been proposed
in an attempt to improve both quality and applicability of
solutions: the use of omnidirectional cameras [10], [11],
robust feature extraction and matching [12], [13], data fusion
with other sensors [14], [7] and extension to a Simultaneous
Localization and Mapping (SLAM) framework [15], [16],
[17].

Visual odometry algorithms can be broadly divided into
two categories: stereo and monocular configurations. Stereo
configurations [1] use a multi-camera array (or a moving
camera) to capture several images simultaneously, from dif-
ferent vantage points. If the baseline is known, it is possible
to project detected features into the 3D space, and by tracking
them over time, to estimate vehicle motion. Monocular
configurations use a single camera, which is essentially
a bearing-only sensor. If a sequence of images taken at
different locations is provided, the baseline (here equivalent
to camera translation and rotation) can be estimated, a
scenario commonly known as structure-from-motion [18].
One well-known limitation of monocular vision odometry is
the inability to recover absolute scale, a problem addressed
in [19] for the special case of nonholonomic constraints.

Although intuitive, the machine learning framework has
been scarcely used in visual odometry [20], [21]. Self-
calibration methods [22] are widespread, however they still
assume a known fixed camera model, and there is no
guarantee that these parameters will not change over time
due to vibration, mechanical stress or changes in temperature.
Machine learning algorithms, on the other hand, are capable
of inferring both camera model and calibration parameters,
and any posterior changes on the underlying function will
reflect on the uncertainty estimates. A Gaussian Process
(GP) [3] is a non-parametric regression and classification
tool which has been used with great success in various areas
of mobile robotics such as mapping [23], terrain modeling
[24] and dynamic system learning [25].

The standard GP derivation assumes a single output vari-
able, using independent models to deal with multiple outputs
when necessary. This is however not the case in visual
odometry, which is essentially a multi-task problem where
each output is heavily correlated due to vehicle motion
constraints. Alternative derivations [26] compute a single
covariance matrix containing observations from all tasks, but
each inference is still conducted independently. In [27] the
authors propose a method where the full covariance matrix
is estimated. This method is extended here to address the full
problem of 3D visual odometry with 6 degrees of freedom,
and the introduction of a first-order temporal dependency
between frames creates a robust and generic framework that
can address more challenging scenarios.

III. OPTICAL FLOW PARAMETRIZATION
The images used in this paper were obtained from a

camera installed in an aircraft pointing downwards. In this
configuration, the high altitude poses a challenge in both
feature extraction and matching due to loss in detail and
sensitivity to angular motion that translates into inconsistent
(and often small) overlapping areas between frames (see
Fig. 1(a)). These overlapping areas are defined here as the
smallest rectangle that includes all successfully matched
features from one frame in relation to another.

(a) Example of images used for training and evaluation. Red dots indi-
cate matched SIFT features, and yellow lines represent the boundaries
of overlapping area between frames.
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(b) Optical flow parameters extracted from two subsequent frames I1
and I2.

Fig. 1. Optical flow parametrization.

The SIFT (Scale Invariant Feature Transform) descriptor
[28] has been shown to provide robust results under these
conditions, and so was chosen here as the feature selection
method. Other algorithms such as SURF (Speeded Up Ro-
bust Features) [29] could also be readily applied for speed
purposes or to increase the amount of information obtained
from each frame. A simple filter was implemented to remove
outliers. Matched features with a shift distance and angle
significantly different from their neighbours are discarded.
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Assuming that the aircraft will maintain a considerable
altitude and move roughly horizontally, it is reasonable to
consider the ground plane as homogeneous. The optical
flow information can then be encoded by a single pair of
parameters, the average shift distance d and angle θ of all
matched features (or their projections c and s on the x-y
image axis). Also, the position (x, y)ci and sizes (h,w)i of the
overlapping areas are directly related to camera movement,
and so contain information that could be useful in the
inference process. These eight parameters are illustrated in
Fig. 1(b), and together compose the vector

x = {d, θ, s, c, xc1, yc1, xc2, yc2, h1, w1, h2, w2} (1)

that will be used as input for the Gaussian Process framework
described in the following section.

IV. MOTION ESTIMATION

From the machine learning perspective, the estimation
of vehicle motion from sensor information can be seen as
a supervised regression problem: the mapping of an input
x to outputs f(x) + ε using the training data Λ, where
ε = N (0,Ψ) represents a Gaussian noise with covariance
Ψ. Assuming independent noise, Σ is a diagonal matrix. For
visual odometry, xn ∈ <D contains optical flow information
extracted from two subsequent frames and yn ∈ < is a
particular corresponding camera motion, obtained for train-
ing purposes from an independent sensor. A positive-definite
kernel (from here on known as the covariance function)
k(x,x′) is used to characterize the relationship between
each two points in the input space, and its coefficients (the
hyperparameters) are optimized as to minimize a certain cost
function.

A. Gaussian Processes Overview

A Gaussian Process is a non-parametric Bayesian infer-
ence method that maintains a probabilistic distribution over
an infinite number of functions. From a training dataset Λ =
{x, y}Nn=1 it learns a model that represents the underlying
phenomenon. This model is entirely defined by a mean m(x)
and covariance k(x,x′) functions:

f(x) ∼ GP(m(x), k(x,x′)). (2)

Assuming a constant zero mean function, inference for a
single test point x∗ given Λ involves the computation of the
mean f(x∗) = f∗ and variance V(f∗), calculated as

f∗ = k(x∗, X)T [K(X,X) + σ2
nI]−1y (3)

and

V(f∗) =k(x∗, x∗)−
− k(x∗, X)[K(X,X) + σ2

nI]−1k(x∗, X), (4)

where σ2
n quantifies the noise expected in the observation y

and K is the covariance matrix, with elements Kij calculated
based on a covariance function k(x, x′). The neural network
covariance function, as described in [30], is used here due

to its non-stationary properties and ability to model sharp
transitions and non-linearities:

k(x, x′)=σ2
f arcsin

 2x̃TΣx̃′√
(1 + 2x̃TΣx̃)(1 + 2x̃′

T
Σx̃′)

. (5)

In Eq. 5, σf is a signal variance used to scale the
correlation between points and x̃ = {1, x} is an augmented
vector. This derivation comes from a neural network with
a single hidden layer, a bias term and a number of units
tending towards infinite [31]. The hidden weights are as-
sumed to have a zero mean and a covariance Σ, composed
of length-scales coefficients. The variance signal σf and the
length-scales in Σ are the hyperparameters of the covariance
function, and will be optimized during the training process.

B. Coupled GPs

In the 3D space, six parameters are necessary to uniquely
describe a vehicle’s pose: three for position (x, y, z) and
three for orientation (γ, β, α) in row, pitch and yaw an-
gles. Similarly, in holonomic navigation six parameters are
necessary to describe vehicle motion: three for translation
(ẋ, ẏ, ż) and three for rotation (γ̇, β̇, α̇); these are the outputs,
or tasks, of the visual odometry algorithm. Since they are
derived from the same input data (the optical flow parameters
discussed previously), it is natural to assume that there
are dependencies between tasks, which if modeled properly
could lead to improved results.

For this reason we use an extension to the GP framework,
called Coupled GP (CGP) [27], where all tasks are estimated
simultaneously and a full covariance matrix representing the
uncertainty of the tasks and correlations between them is
obtained. First of all, the training dataset is extended to
incorporate all six tasks, assuming the form Λ = {Λi}6i=1

where Λi = {xn, y(n,i)}Nn=1 and N is the total number
of data points. The multi-task covariance matrix is defined
as K = Kf ⊗ Kx + Σn, where ⊗ denotes the Kronecker
product, Kf is a 6 × 6 positive-definite matrix that models
the amplitude of correlations between each task (a multi-
task analogue to σ2

f in Eq. 5) and Σn is a diagonal matrix
with noise values. Kx is a 6 × 6 block-matrix where Kij

is the standard covariance matrix between tasks i and j. A
cross-covariance function (Eq. 6) is used when i 6= j, derived
from the definition of a neural network function in which two
smoothing kernels are convolved [32] to obtain a positive-
definite matrix that correlates multiple outputs:

kij(x, x′)=

arcsin

 2x̃TΣx̃′√
(1 + 2x̃TΣx̃)(1 + 2x̃′

T
Σx̃′)


(|Σi||Σj |)4

√
|Σi + Σj |

, (6)

where Σ = Σi(Σi + Σj)
−1Σj . The predictive mean vector

f∗ and covariance V(f∗) for a single test point x∗ is now
calculated as

f∗ = KT
s K

−1y (7)
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V(f∗) = Kii(x∗, x∗)−KT
s K

−1Ks, (8)

where

Ks =



kf1,1k1,1(x∗, x1,1) . . . kf6,1k6,1(x∗, x6,1)
...

...
...

kf1,1k1,1(x∗, x1,N ) . . . kf6,1k6,1(x∗, x6,N )
...

...
...

kf1,6k1,6(x∗, x6,1) . . . kf6,6k6,6(x∗, x6,1)
...

...
...

kf1,6k1,6(x∗, x6,N ) . . . kf6,6k6,6(x∗, x6,N )


(9)

and
y = [y1,1, . . . , y1,N , . . . , y6,1, . . . , y6,N ]

T
. (10)

In Eq. 9, the indexes in ”xt,n represent respectively the
task number and the data point. The definition of Ks as a
multi-column matrix, containing the relationship between the
test point x∗ and the training points from all tasks, is the main
contribution of Coupled GPs over traditional multi-task GPs.
This allows the simultaneous estimation of all components
in the mean vector f∗, along with a full covariance matrix
V(f∗) containing cross-dependencies between tasks.

C. Temporal Dependency

In the previous subsection we addressed cross-
dependencies between tasks, which is a natural constraint in
visual odometry applications. This is however not the only
one, and here we explore temporal dependencies between
tasks. It is safe to assume that a real vehicle will change
its velocity in a smooth manner, without discontinuities,
and therefore its motion estimates will also vary smoothly.
A first-order temporal dependency implies that f∗t will be
correlated to f∗t−1, and is modeled in the GP framework by
incorporating f∗t−1 into the input vector xt. So, for a test
point with optical flow information x∗t the new augmented
input vector becomes

z∗t = {x∗t , f
∗
t−1}. (11)

During training, the hyperparameters of a covariance func-
tion are optimized as to minimize a certain cost function,
and the temporal dependencies between tasks arise naturally.
The log-marginal likelihood was chosen here to be the
cost function due to its ability to penalize complexity, thus
avoiding over-fitting:

ζ=ln p(y|X)=−1

2
log(|K|)−1

2
yTK−1y−N log(2π). (12)

This iterative process, however, disturbs the traditional
training methodology, because the complete training set Z
is not readily available for evaluation. It is possible to use
ground-truth information directly to complete Z, but this
would generate a best-case scenario that is not consistent
with the inference step, where estimation errors will prop-
agate to the next iterations. This error propagation can be
incorporated to the training stage by dividing Λ into two

Algorithm 1 Temporal Dependency Training
Input: Training Datasets Λ1 and Λ2

Initial Hyperparameters θ
Output: Optimized Hyperparameters θ

1: likelihood new ←∞
2: repeat
3: likelihood old = likelihood new
4: for xi in Λ1 do
5: Z1

i ← (xi, y1i−1)
6: end for
7: % Expectation step
8: for xi in Λ2 do
9: yCGP = CGP INFER(Z1, xi, θ)

10: Z2
i ← (xi, yCGP )

11: end for
12: % Maximization step
13: (likelihood new, θ) = CGP TRAIN(Z2, y2, θ)
14: Λ1 � Λ2

15: until likelihood new − likelihood old = 0

subsets, Λ1 and Λ2, each composed of half the training data.
In the first subset, the values of y1 are repeated to complete
Z1 (with a shift of -1, so that y1

i−1 completes Z1
i ), and then

used to evaluate Z2 iteratively. These steps are illustrated on
lines 4-11 of Algorithm 1.

Once the evaluation process is complete, the estimated Z2

from the second subset are used to optimize the CGP hy-
perparameters based on the log-marginal likelihood function
defined in Eq. 12, according to the gradient-descent method
(line 13 of Algorithm 1). It was determined empirically that
the hyperparameters assigned as length-scales for f∗ should
be kept from assuming too low values, since this would
create a high sensibility to small errors in estimation. Once
this optimization is complete, the process is repeated with
inverted subsets (Λ2 is now used for inference and Λ1 for
training) until the cost function converges.

This technique resembles the expectation-maximization
(EM) algorithm, in the sense that it alternates between
computing motion estimates from current hyperparameter
values (the expectation step) and optimizing hyperparameters
values using current motion estimates (the maximization
step). Also, there is no guarantee of convergence to the global
minimum, so heuristic approaches for escaping local minima,
such as random restart or simulated annealing, should be
considered.

V. EXPERIMENTAL RESULTS

The visual odometry algorithm proposed in this paper was
tested using data collected from a UAV flight (Fig. 2) over
a deserted area, at a rate of 3 frames per second and an
average speed of 110 km/h. The UAV was also equipped
with inertial sensors and GPS that were fused to serve as
ground-truth information. The first 4000 frames after aircraft
estabilization were used for training, and the 2000 following
frames were used for evaluation. The SIFT algorithm failed
to find any matches in around 2% of the image pairs, due
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4.2 J3 Cub Flight Vehicle 

  
Figure 2: UAV and Sensor Payload System: Left, the J3 Cub, a small UAV used to 

carry the sensor payload over the designated operating area; right, the sensor payload 
box carried on-board the UAV consisting of a tri-axial IMU, GPS receiver, downwards-

mounted colour monocular camera and PC104 computer stack for processing. 

 

The UAV used to carry the sensor payload is a modified one-third scale J3 Cub, 
capable of carrying a payload of 15kg with an endurance of one hour in its 
current configuration (see Figure 2). The flight vehicle has an autonomous flight 
control system that follows a pre-flight allocated trajectory over the terrain at a 
fixed height of 100m above the ground. 
 

4.3 Sensor Payload 

The vehicle carries a sensor payload consisting of a low-cost IMU, GPS 
receiver and a downwards-mounted colour monocular vision camera. 
Acceleration and rotation rate data from the IMU is sampled at 100Hz. The GPS 
receiver computes the earth-referenced position and velocity of the UAV at 5Hz. 
Colour vision frames are captured at 3.75Hz at a resolution of 1024x768 pixels. 
An onboard PC104 computer is used to log the sensor data, which is later 
processed after the vehicle lands. 
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(b) Sensor payload

Fig. 2. Equipment used in the experiments.

to a lack of overlapping areas caused by severe angular
motion. These frames were avoided during training, and
during evaluation the results from the previous timestep were
repeated. We reiterate here that during evaluation the ground-
truth information was used only for comparison purposes,
and all results presented in this section were obtained using
only images collected from a single camera.

Fig. 3 shows the CGP estimation results for each one of
the tasks (red lines), along with the corresponding ground-
truth information (black lines). It is clear from the proximity
between these two values that the proposed method was
indeed capable of learning the underlying transformation
from optical flow to vehicle motion encoded on the training
data, and then use the resulting model to predict estimates
on new data. Linear uncertainty on the x axis is higher
since this is the UAV’s primary motion axis (forward), and
angular tasks have a higher uncertainty in general due to a
smaller number of samples in the training dataset, and also
because angular motion is less constrained in this particular
application.

The log-marginal likelihood values and accumulated errors
for each training iteration are presented in Fig. 4. As ex-
pected, the negative likelihood values decrease steadily and

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

20

40

X

0 200 400 600 800 1000 1200 1400 1600 1800 2000
−50

0

50

Y

0 200 400 600 800 1000 1200 1400 1600 1800 2000
−20

0

20

Z

0 200 400 600 800 1000 1200 1400 1600 1800 2000
−0.5

0

0.5

R
ol
l

0 200 400 600 800 1000 1200 1400 1600 1800 2000
−0.2

0

0.2

Pi
tc
h

0 200 400 600 800 1000 1200 1400 1600 1800 2000
−0.5

0

0.5

Frame

Ya
w

Fig. 3. CGP results for each task. Black lines represent ground-truth
information, red lines represent the resulting motion estimates, and gray
areas are the uncertainty within 2 standard deviations (95% confidence
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Fig. 4. Intermediary results from the training stage.

the errors follow a similar trend, with occasional increases
due to the multi-task nature of the optimization (certain errors
might increase as others decrease).

These results were then integrated to obtain a pose es-
timate for the UAV. Angular motion estimates are absolute
and therefore can be simply added together over time, such
that (γ, β, α)t+1 = (γ, β, α)t + (γ̇, β̇, α̇)t. Linear motion
estimates are relative to aircraft orientation, and can be
projected back into the global coordinate system using the
rotation matrix

R =

 cγcα − cβsγsα cαsγ + cγcβsα sβsα
−cβcαsγ − cγsα cγcβcα − sγsα cαsβ

sγsβ −cγsβ cβ

, (13)

such that (x, y, z)t+1 = (x, y, z)t + RTt (ẋ, ẏ, ż). The final
localization estimates are depicted in Fig. 5, along with
ground-truth obtained from the inertial sensors and GPS.
The flight trajectory was mostly horizontal, and Fig. 5(b)
shows that its overall shape was maintained, with no missing
corners or changes in the plane of navigation1. The relative
scale (indicated by the linear tasks in Fig. 3) was also
recovered to a high degree of precision (with an accumulated

1A video showing the iterative construction of this map was also
submitted.
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Fig. 5. Evaluation results with the proposed Coupled GP method.

error smaller than 2%), estimated from the training data
and extrapolated to address new points in the input space.
Significant changes in altitude to areas with no training
samples would compromise scale recovery, as this would
change the correlation between image structure and vehicle
motion. As expected, a combination of accumulated errors
and lack of matching features generated a drift over time
that could not be avoided. The sporadic fusion of these
estimates with an absolute localization sensor, such as a GPS,
or the addition of a loop-closure algorithm, would improve
localization further.

Similarly, in Fig. 5(a) we can see the cyclical changes in

altitude during flight, ranging from 80 to 100 m. The high
frequency of these variations poses a challenge for the GP as
a regression tool, because of the fine line between what is a
trend and should be modeled and what is noise and should be
discarded. During training, the noise hyperparameters were
actively maintained at low levels to avoid an under-fitting
scenario. Interestingly, the use of temporal dependencies
between tasks created a ”smooth and delay” effect as a
response to sudden variations, because of the proximity
constraint imposed to outputs in subsequent timesteps.

The choice of using Coupled GPs for multi-task estimation
is an expensive one, because the volume of training data
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increases in direct proportion to the number of tasks. This
impacts the training stage in two ways: 1) Matrix inversion
has a O(N3) computational cost on the number of data
points; 2) Hyperparameter optimization must be performed
in a higher-dimensional space, which delays convergence
and increase the number of local minima. To justify this
approach, the same algorithm presented in this paper was
implemented using six single independent GPs (SGP), thus
forcibly eliminating any cross-correlation. During training,
the expectation step was still conducted simultaneously to
maintain temporal dependency between all tasks, and the
maximization step was conducted independently, with each
task responsible for its own set of hyperparameters. The lo-
calization results are depicted in Fig. 6, where we can see the
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Fig. 6. 3D localization estimates obtained from the proposed method with
six Single GPs.

impact of joint estimation in visual odometry. Even though
relative scale was still recovered (but to a lesser degree of
precision, see Table. I), horizontal misalignments are much
more pronounced and accumulated errors in angular tasks
create several changes in the plane of navigation.

A standard Structure-From-Motion (SFM) algorithm was
also implemented and tested using the same dataset, as way
to evaluate the performance of the method proposed against
traditional approaches. The camera was calibrated and the
geometrical model was based on the work of [2], using
RANSAC to calculate the fundamental matrix and manual
adjustment of scale. Results obtained using a generic urban
vehicle dataset were comparable to other implementations
found in the literature. The final localization estimates using
the UAV dataset are shown in Fig. 7. We attribute this
poor performance to three reasons: 1) Small and inconsistent
overlapping areas between frames; 2) The high altitudes
create a lack of depth perception in the ground plane; 3)
Poor camera calibration, due to the narrow field of vision that
affected the calibration process (the calibration board had to
be positioned far from the camera). Further improvements to
the standard SFM algorithm could lead to better results, but
that was not explored in this work.

A quantitative comparison between these three methods
is presented in Table I, where the root mean square error
(rmse) for each task is given (all values are multiplied by
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Fig. 7. 2D localization estimates with a SFM algorithm.

103) . As expected from previous localization results, the
SFM approach has errors of around two orders of magnitude
higher than the GP approach, and even though scale was
manually adjusted the error in the forward linear axis (x)
was still significantly larger than in any other task. Both GP
approaches were capable of recovering scale automatically,
however in the x axis CGP performed better with an error
approximately 60% smaller than SGP. This improvement
does not propagate to the other two linear tasks, due to the
predominance of noise (see Fig. 5(a)) that was filtered out
during the regression. CGP also performs better in all angular
tasks, especially in pitch (improvement of 31%) and yaw
(21%), both of which account for the misalignments found
on Fig. 6.

Task Struct. Motion Single GP Coupled GP
(rmse) (rmse) (rmse)

X 1384.10± 25.72 20.47± 0.1552 8.49± 0.0668
Y 453.56± 5.76 6.84± 0.0541 5.95± 0.0472
Z 325.50± 6.69 10.16± 0.0806 10.23± 0.0812

Roll 11.48± 0.56 0.69± 0.0056 0.66± 0.0053
Pitch 5.09± 0.01 0.35± 0.0027 0.26± 0.0021
Yaw 19.07± 0.55 0.41± 0.0032 0.33± 0.0027

TABLE I
LINEAR (10−3 m) AND ANGULAR (10−3 rad) ERRORS

VI. CONCLUSION

This paper presented a new technique for 3D motion esti-
mation in visual odometry. Instead of relying on a calibrated
camera model, we use a Gaussian Process to learn the un-
derlying function that maps optical flow directly into vehicle
motion. To account for cross-dependencies between tasks,
the traditional GP implementation is extended to include
multi-task estimation, using Coupled GPs, and an iterative
filtering process accounts for temporal dependencies. Results
obtained using data collected from a UAV flight over a
trajectory of 20 km at speeds of 110 km show significant
improvement over the standard visual odometry algorithm.
Inference on new data can be performed at 10 Hz, a value
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suitable for real-time applications. As uncertainty estimates
for each task are also provided, data fusion with other sensors
and extension to the SLAM scenario is straightforward.
Future work will focus on loop-closure algorithms and also
on incorporating geometrical constraints into the GP frame-
work itself, where the calibration parameters are learned as
hyperparameters and used to provide an initial estimate that
is then improved through further training.
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