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A Natural Feature Representation for
Unstructured Environments

Fabio Tozeto Ramos, Member, IEEE, Suresh Kumar, Ben Upcroft, and Hugh Durrant-Whyte

Abstract—This paper addresses the long-standing problem of
feature representation in the natural world for autonomous nav-
igation systems. The proposed representation combines Isomap,
which is a nonlinear manifold learning algorithm, with expectation
maximization, which is a statistical learning scheme. The repre-
sentation is computed off-line and results in a compact, nonlinear,
non-Gaussian sensor likelihood model. This model can be easily
integrated into estimation algorithms for navigation and tracking.
The compactness of the model makes it especially attractive for de-
ployment in decentralized sensor networks. Real sensory data from
unstructured terrestrial and underwater environments are used to
demonstrate the versatility of the computed likelihood model. The
experimental results show that this approach can provide consis-
tent models of natural environments to facilitate complex visual
tracking and data-association problems.

Index Terms—Dimensionality reduction, feature extraction,
field robotics, Isomap, probabilistic representation.

I. INTRODUCTION

THIS PAPER addresses the long-standing issue of natu-
ral feature extraction and representation in unstructured

worlds for autonomous navigation. A unified framework based
on information theory and probabilistic learning is proposed for
terrestrial, underwater, and aerial applications. The stochasticity
of the computed natural feature models enables easy integra-
tion into conventional estimation algorithms for navigation and
tracking. This results in rich characterizations of unstructured
environments in terms of color, texture, and other sensory prop-
erties to facilitate the design of robust autonomous navigation
systems.

The feature-extraction algorithm used is based on concepts
of information theory to extract novel features from the sensory
space. Novelty is informally defined to correspond to features
with a low probability of occurrence and, thus, high information
content [1]. The objective of effective feature selection is to
identify regions in the image with unique sensory properties.
The frequency of occurrence of the properties can be quantified
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through property histograms and the feature-selection problem
is addressed by working with the least likely features.

The integration of natural features described by rich color,
texture, reflectivity, and other sensory properties with nonlin-
ear filtering schemes requires a probabilistic model. This paper
combines the concepts of nonlinear dimensionality reduction
(NLDR) with statistical learning algorithms to compute proba-
bilistic representations of natural features.

Probabilistic modeling of visual features has been reported
in the modeling of texture using Markov random fields with the
maximum entropy principle as described in [2]. Lee et al. [3]
present a generative model based on independent components
analysis that provides a linear and non-Gaussian framework for
feature representation. In the work of Karklin et al. [4], a hier-
archical probabilistic framework is used for detection of higher
order statistical structure in natural imagery. A key limitation of
these models is that they do not necessarily preserve the inherent
similarities and distinctions in the original visual data. This min-
imizes their utility in classical estimation and data-association
tasks.

More recently, a technique to learn both an invariant mapping
and the mapping function with convolutional neural networks
was proposed in [5]. The learning procedure relies on complex
nonconvex optimization methods to compute the embeddings.
However, a main limitation is the lack of a probabilistic repre-
sentation which makes this technique unsuitable for data-fusion
tasks.

The main contribution of this paper is the combination and
a real-time implementation of feature extraction and selection,
NLDR, and statistical learning techniques for large-scale per-
ception problems in unstructured environments. The probabilis-
tic representation of natural features may be integrated within
existing nonlinear filtering algorithms [6].

The proposed framework for feature extraction and repre-
sentation includes an off-line learning phase where a statistical
natural feature model is computed from environment-specific
training data. Isomap, which is an NLDR algorithm, is used in
conjunction with expectation–maximization (EM) to compute a
generative statistical model in the off-line phase of the proposed
framework. The online implementation of the scheme performs
natural feature extraction, followed by probabilistic model in-
ference to classify the selected features with respect to the gen-
erated model. The complete framework is shown in Fig. 1.

The natural feature extraction algorithm used in the online
phase of the implementation is detailed in Section II. Section III
describes the Isomap and EM algorithms that are used in the
off-line computation of a generative natural feature model.
Section IV describes the model inference methodology to
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Fig. 1. Block diagram depicting the off-line model generation and online
model inference phases in the proposed feature-extraction and representation
framework.

enable online classification of natural features. Real applications
involving natural imagery acquired by autonomous ground and
underwater vehicles are presented in Section V.

II. SENSOR DATA PREPROCESSING—NATURAL

FEATURE EXTRACTION

The extraction of stable natural features in unstructured dy-
namic worlds has been a persistent research question at the
intersection of robotics, computer vision, and machine learn-
ing. Visual feature extraction is inherently complex due to the
variability in sensor data on account of factors such as ob-
server viewpoint, ambient illumination conditions, and occlu-
sions. Interest point feature detectors [7] and scale-invariant
feature transforms (SIFT) [8] are quite successful at extracting
reliable features in structured environments, but fail to select a
compact feature set in natural imagery.

Fig. 2 illustrates the complexity of natural imagery acquired
by unmanned terrestrial and aerial vehicles. Interest point fea-
ture detection schemes are not guaranteed to extract a compact
set of physical features such as trees, shrubs, bush, or lakes
within these images. These methods may, however, have sig-
nificant potential in addressing other pressing issues in robotics
such as loop closure. The utility of these methods in autonomous
mapping of physical natural features seems limited.

Recent study [9] suggests that robust segmentation of un-
structured imagery could be achieved by a linear combination
of relevant visual cues such as color, texture, color opponency,
motion, and spatial proximity. In particular, it has been shown
that a rigorous treatment of texture in natural imagery is required
to select meaningful features.

The feature selection challenge is quite distinct from the de-
tection of boundaries in natural images that is addressed by [9].
A frequentist approach is adopted in this paper to select regions
of natural imagery with the most unique color and texture. The
information content of image regions is assumed to be inversely
proportional to the frequency of occurrence of the region prop-

Fig. 2. Autonomous vehicles in unstructured environments. Conventional fea-
ture extractors such as SIFT extract too many features in natural imagery, as
shown in the pictures on the right. The tails of the white lines depict the SIFT-
extracted features. These features are not useful in autonomous mapping appli-
cations, where the main objective is to extract unique physical features, such as
trees, bush, and lakes that exist in the environment. This paper uses a frequentist
approach to feature extraction to detect unique natural features.

erties in the image. If p is the probability of occurrence of an
image property, the Shannon information content is computed
as log( 1

p ).

A. Information Content in Color Space

The information content of image regions in color space IC

is computed based on the joint probability of occurrence of
the red, green, and blue intensities at each pixel within the im-
age. Multidimensional histograms are used to compute the joint
probabilities at the pixel locations. The Shannon information
content at a pixel log( 1

p ) is computed from the joint statistics.

B. Information Content in Texture Space

Spectral decomposition through Gabor filtering is used in this
paper to quantify texture as it provides a good approximation
of natural processes in the primary visual cortex [10]. The input
image is convolved with a precomputed filter-bank at multiple
scales and orientations. A histogram of the sum of the ampli-
tudes for each of the scales and orientations is computed to
represent the probability of texture occurrence. The pixel-wise
Shannon information content in terms of the texture IT can then
be calculated.

C. Feature Extraction

A simple linear combination of the color and texture space
information contents is used to compute the net information
content of features with respect to both visual cues. In gen-
eral, I = α × IC + β × IT , where α + β = 1. In a practical im-
plementation, equally weighted linear combinations have been
found to perform reliably. The net information content is appro-
priately thresholded to yield the most informative features with
respect to color and texture.

D. Example

The entire feature extraction process is illustrated through a
simple example image from an underwater sequence (Fig. 3). A
2-D color histogram of the raw red and green intensities in the
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Fig. 3. (a) Sample image from underwater data sequence. (b) Information
content in color and (c) texture spaces.

Fig. 4. (a) Original image and (b) mutually informative feature set. The fea-
tures that are maximally informative with respect to both the color and texture
cues are highlighted in red. They exhibit significant contrast with respect to their
local neighborhoods and are expected to persist in the environment.

image was computed and the information content of each pixel
was computed as log( 1

p ) [see Fig. 3(b)]. In order to promote
corals with rich texture content into the feature space, the raw
image was convolved with Gabor wavelets at four scales and six
orientations. The histogram of the resultant amplitudes of the
response IT is shown in Fig. 3(c).

The maximal mutually informative (MMI) subspace is com-
puted from an equally weighted linear combination of the in-
formation contents in color and texture space (Fig. 4, right).
The maximally relevant features (color-coded red) exhibit sig-
nificant contrast with respect to their neighborhoods and permit
convenient feature selection through the choice of an appropri-
ate mutual information threshold.

The stability of the feature selection algorithm was tested on
a sequence of 100 images from an existing underwater data se-
quence and the MMI subspace was used to compute the feature
space as described earlier, except for the fact that the color space
description used a hue histogram as opposed to any of the raw
color components. This choice was preferred in order to enable
robust feature selection over varying illumination states. The
results are shown in Fig. 5. The promoted features are consis-
tent through the tracked sequence and are clearly perceived as
regions with distinctive hue and texture.

III. MODEL GENERATION

Information-theoretic concepts can be used to extract fea-
tures with unique properties within the sensory space. However,
each such feature is potentially set in a very high-dimensional
space that is not readily amenable to simple interpretation and
reasoning tasks. The development of compact and useful repre-
sentations of natural features in unstructured dynamic worlds is
critical to the development of robust perception systems.

Fig. 5. Stability of the feature selection scheme over 100 images from the reef
data. A sample of eight frames is shown to demonstrate the consistency of the
promoted features. Features with the highest contrast displayed in red physically
correspond to regions with distinctive hue and texture. Note that only features
with fine texture are extracted. Although the blue sandy area in the lower left of
the image is quite distinct from the other areas in the image, this is not deemed
to be a distinctive feature through lack of texture, as in most natural scenes,
textureless patches commonly correspond to large expansive regions that are
not useful for characterizing unstructured imagery.

Eigenvector methods such as principal component analysis
(PCA) and its numerous variants provide theoretically opti-
mal natural feature representations from a data compression
standpoint. They are, however, unable to provide neighbor-
hood preserving representations that are crucial in classification
tasks. This limitation has motivated the development of various
NLDR methodologies such as kernel PCA [11], Isomap [12],
Laplacian eigenmaps [13], and locally linear embedding [14].
Most NLDR techniques presume that the data lies on or in the
vicinity of a low-dimensional manifold and attempt to map the
high-dimensional data into a single low-dimensional, global co-
ordinate system. The Isomap algorithm is adopted in this paper
to provide a low-dimensional description of high-dimensional
features, primarily because it estimates the intrinsic dimension-
ality of the manifold in addition to the underlying states.

A. Theoretical Aspects of the Isomap Method

The Isomap method [12] formulates NLDR as the problem
of finding a Euclidean feature space embedding a set of obser-
vations that attempts to explicitly preserve their intrinsic metric
structure; the metric structure is quantified as the geodesic dis-
tances between the points along the manifold.

The Isomap method starts out assuming that the data X lies
on an unknown manifold embedded in the high-dimensional ob-
servation space and attempts to reconstruct an implicit mapping
f : X → Y that transforms the data to a low-dimensional Eu-
clidean feature space Y that optimally preserves the distances
between the observations as measured along geodesic paths on
the manifold. Significant steps in the Isomap algorithm are sum-
marized next.
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B. Nearest-Neighbor Computation

Neighboring points on the manifold are determined based on
the input space distances dX (i, j) between pairs of points i, j ∈
X. Each input point is connected to adjacent points based either
on the K-nearest neighbors or all points within a fixed distance ε
from the point under consideration. The neighborhood relations
are expressed as a weighted graph G over the data points with
edges of weight dX (i, j) between neighboring points.

C. Computation of Geodesic Distances

The length of a path in G is defined as the sum of the link
weights along the path. The shortest path lengths dij

G between
two nodes i and j in the graph G are computed through the
Floyd’s algorithm [15] that generally scales as O(N 3) or the
Dijkstra algorithm [16] that scales as O(N 2 log(N)), where N
is the number of data points.

D. Graph Embedding Through Classical Multidimensional
Scaling

Classical multidimensional scaling (MDS) is a technique that
computes a low-dimensional configuration of high-dimensional
input that best preserves pairwise distances between input points
[17]. The key innovation in the Isomap method is to apply MDS
to the pairwise geodesic distances on the manifold so as to com-
pute a low-dimensional and neighborhood-preserving configu-
ration. The coordinate vectors yi ∈ Y are chosen to minimize
the cost function E = ‖τ(dG ) − τ(dY )‖L2 , where dY is the
matrix of output space distances, and the norm is the matrix L2

norm
√∑

i,j (τ(dG ) − τ(dY ))2
ij , τ = 1

2 HSH is an operator

that converts distances into inner products, Hij = δij − (1/N)
is the centering matrix, and Sij = (dij

G )2 is the matrix of squared
geodesic distances. The global minimum of the cost function
is computed by setting the output space coordinates yi to the
top k eigenvectors of τ(dG ). Introducing a unit row vector
P = [111 . . . . . . 1] with N columns and an N × N transla-
tion matrix Q with constant entries Qij = (ΣN

i=1Σ
N
j=1Sij ), the

N × N matrix τ(dG ) is expressed as

τ(dG )=
1
2

(
S −

(
ΣN

j=1Sij

) P

N
− PT

(
ΣN

i=1Sij

)
N

+
Q

N 2

)
(1)

E. Landmark Isomap Method

The landmark Isomap method was designed to overcome the
significant computational burden involved in the Dijkstra algo-
rithm and subsequent eigensolution of a full symmetric matrix
incurred in global Isomap. The theoretical description of land-
mark Isomap presented here closely adheres to the implemen-
tation provided by the original authors [18]. In this method,
the elements of a small random subset nL of the total number
of data points N are designated as landmarks. The particular
landmarks chosen are not critical but an adequate distribution of
landmarks over the manifold is important to ensure the general
shape of the manifold is preserved. It was found that a uniform
sampling of at least 100 landmarks was required for an accurate

embedding. The distance matrix dij
G now corresponds only to

the distances between the landmarks and is of size nL × nL (as
opposed to N × N in global Isomap). The cost of the Dijkstra
algorithm correspondingly reduces to O(nL × N × log(N)).

F. Computation of Low-Dimensional Embedding

MDS is applied to the now smaller distance matrix to com-
pute a low-dimensional embedding of the landmarks. The low-
dimensional embedding is obtained by computing the eigen-
vectors of the inner product matrix Bn = −Hn∆Hn/2, Hn =
δij − (1/nL ) and ∆ is a matrix of squared distances between
the landmarks. Introducing a unit row vector with nL columns
P ∗ = [11 . . . 1] and an nL × nL translation matrix Q∗ with con-
stant entries Q∗

ij = (ΣnL
i=1Σ

nL
j=1∆ij ), the nL × nL matrix Bn

can be expressed as

Bn =
1
2

(
∆−

(
ΣnL

j=1∆ij

)P ∗

nL
−PT

(
ΣnL

i=1∆ij

)
nL

+
Q∗

nL × nL

)
.

(2)
This low-dimensional coordinate of the landmark in l-
dimensional space is designated as L = (

√
(λ1)vT

1 ,
√

(λ2)vT
2 ,

. . . ..,
√

(λl)vT
l )T , where λi are the eigenvalues and v designate

the eigenvectors.

G. Nonlandmark Extensions

If �n is the column-wise mean of ∆, a nonlandmark point y
can be embedded into the l-dimensional space as

y = (1/2)L�(�n −�y ) (3)

where L� is the pseudoinverse transpose of L and �y is the
vector of squared distances between the candidate point and the
landmarks. Thus, the remaining N − nL nonlandmark points
can be embedded into the l-dimensional space.

The embedding computed by the landmark Isomap method
is consistent with that computed by classical MDS at the land-
mark locations and is an estimate at the nonlandmark loca-
tions. If the distance matrix between all the points and the
landmarks can be represented exactly by a Euclidean config-
uration in Rl , and the landmarks are chosen such that their
affine span in that configuration is l-dimensional, the estimate
at the nonlandmark locations is accurate up to a rotation and
translation.

H. Generative Model

The Isomap algorithm and, indeed, most NLDR algorithms
are inherently deterministic algorithms. They do not pro-
vide a measure of the uncertainty of the underlying states
of high-dimensional observations. The integration of the low-
dimensional states computed by Isomap into a nonlinear filter-
ing framework requires the definition of a generative likelihood
model p(z|x), where z and x are the observation and state
spaces, respectively. This likelihood model encapsulates the un-
certainties inherent in the inference of a low-dimensional state
from noisy high-dimensional observations. The incorporation
of natural feature states within a non-Gaussian and nonlinear
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Fig. 6. Graphical model for computation of parametric models from NLDR
algorithms. An arrow directed into a node depicts a dependency on the origi-
nating node. The discrete hidden variable s represents a specific neighborhood
on the manifold. The feature extraction and Isomap algorithms supply the input
data for learning.

filter is expected to significantly enhance data association as the
low-dimensional appearance states and kinematic variables are
complementary.

Methods from supervised learning can be used to derive com-
pact mappings that generalize over large portions of the input
and embedding space. The input–output pairs of Isomap can
serve as training data for an invertible function approximation
in order to learn a parametric mapping between the two spaces.

Given the results of Isomap, a probabilistic model of the
joint distribution p(z,x, s) can be learned through the EM al-
gorithm [19]. The joint distribution can be used to map inputs
to outputs and vice versa by computing the expected values
E[z|x] and E[x|z]. The joint distribution is similar to a mix-
ture of factor analyzers that is commonly used in the machine
learning community to perform simultaneous clustering and lo-
cal dimensionality reduction [20]. The only differences are that
the low-dimensional variable x is observed and not hidden, and
the Gaussian distributions p(x|s) have nonzero mean vectors νs

and full covariance matrices Σs . Learning when the variable x
is observed seems to discover a solution of better quality than
in the opposite situation [21]. The graphical model in Fig. 6
depicts the assumed dependencies. The discrete hidden vari-
able s introduced in the model physically represents a specific
neighborhood on the manifold over which a mixture compo-
nent is representative. This representation conveniently handles
highly nonlinear manifolds through the capability to model the
local covariance structure of the data in different areas of the
manifold. Although this model is used here for learning Isomap
mappings, its range of applications is quite wide. Basically, all
linear or nonlinear regression problems under noise can be ad-
dressed using this scheme. The only constraint is that the number
of samples has to be large enough for a reasonable likelihood
approximation.

The complete three-step generative model can now be sum-
maried based on the assumed dependencies (4)–(6). The joint
probability distribution of all the random variables in the graph-
ical model is expressed as

p (z,x, s) = p(z | x, s)p(x | s)p (s) (4)

where the dependencies are given by

p(z | x, s) =
1

(2π)D/2 |Ψs |1/2

× exp
{
−1

2
[z−Λsx−µs ]

T Ψ−1
s [z−Λsx−µs ]

}

(5)

p(x | s) =
1

(2π)d/2 |Σs |1/2

× exp
{
−1

2
[x−νs ]

T Σ−1
s [x−νs ]

}
. (6)

I. Parameter Estimation

In this model, the set of parameters θ = {p(s), νs , µs ,
Σs ,Ψs ,Λs} that need to be estimated from the observed high-
and low-dimensional spaces are the prior probabilities p(s) that
follow a multinomial distribution, the mean vectors νs and µs ,
the full covariance matrix Σs , the diagonal covariance matrix
Ψs , and the loading matrices Λs . The EM algorithm performs
parameter estimation by maximizing the log-likelihood of the
data given the model and the set of parameters. The observable
parameters in the graphical model are denoted as {zn ,xn}N

n=1 ,
where N is the number of samples. EM iteratively maximizes
the log-likelihood of the observations w.r.t. θ

L =
N∑

n=1

log
M∑
i=1

p (zn ,xn , si | θ) (7)

where M is the number of mixtures considered in the model.
Since direct maximization over the aforesaid expression is hard
to be calculated analytically, an auxiliary distribution q (si) over
the hidden variable is introduced as

L =
N∑

n=1

log
M∑
i=1

q (si)
p (zn ,xn , si | θ)

q (si)
. (8)

Maximizing L with respect to q (s) is equivalent to minimiz-
ing the Kullback–Leibler divergence between the free distribu-
tion q (s) and the posterior probability p (s | zn ,xn , θ). This is
done by setting q (s) = p (s | zn ,xn , θ).

Thus, for each iteration, EM alternates between the expecta-
tion step, where the posterior probability of s given the obser-
vations is computed through

p(s | zn ,xn ) =
p (zn | xn , s) p (xn | s) p (s)∑
s ′p (zn | xn , s′) p (xn | s′) p (s′)

(9)

and the maximization step, where this posterior is used to rees-
timate the parameters. The algorithm continues until the differ-
ence between the log-likelihood of two iterations is smaller than
a given threshold. The update rules for the maximization step
are presented next [14].
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Defining γsn = p(s | zn ,xn ) and ωsn = (γsn/
∑

n ′), the up-
dates are

νs ←
∑

n

ωsnxn (10)

Σs ←
∑

n

ωsn [xn − νs ] [xn − νs ]
T (11)

Λs ←
∑

n

ωsnzn (xn − νs)
T Σ−1

s (12)

µs ←
∑

n

ωsn [zn − Λsxn ] (13)

Ψs ←
∑

n

ωsn [zn − Λsxn − µs ] [zn − Λsxn − µs ]
T (14)

p (s) ←
∑

n γsn∑
s ′n ′ γs ′n ′

. (15)

Once the parameter estimation is completed, the joint dis-
tribution (4) is fully characterized, and a likelihood model
p(x, s|z) can be computed by making an observation in the
high-dimensional space. The likelihood is expressed as a Gaus-
sian mixture model, and can thus be easily integrated within a
nonlinear, non-Gaussian filtering scheme [6].

J. Choice of a Suitable Number of Mixture Components

The choice of an optimal number of mixture components
is crucial to the accurate computation of a likelihood model.
An excessive number of mixture components increases online
computation costs and overfits the training data. An inadequate
number of mixture components fails to model the training data
accurately. A rigorous model selection approach has been de-
scribed in the framework of variational inference [22].

A simpler approach is adopted in this paper that adequately
addresses overfitting concerns. The number of mixture compo-
nents is chosen so that the resulting probabilities p(s) are always
greater than a predefined threshold. If the computed probabil-
ities p(s) are all significantly greater than the threshold, the
model is refined. If any of the mixture components results in
probabilities smaller than the threshold, the model is coarsened
through a reduction in the number of components.

IV. MODEL INFERENCE

The most common inference in this model is the evaluation
of the posterior p(x, s|z = zi). This posterior represents the
probability of the low-dimension vector given an observation
in the high-dimensional space. It can be used to represent the
beliefs of an observation and can be further passed to a filtering
scheme. From the joint distribution, p(x, s|z = zi) is calculated
as

p(x, s|z = zi) =
p(z = zi | x, s)p(x | s)P (s)∑

s ′

∫
p(z = zi | x, s′)p(x | s′)p (s′) dx

.

(16)
A general method to solve this equation is to transform it into
canonical forms and compute the posterior in terms of the canon-

ical characteristics as described in [23]. However, inferences in
a simple structure as the one considered in this paper can be
computed more efficiently by deriving the specific formulas in
the moment form.

The joint distribution p(z,x|s) can be recovered by multiply-
ing p(z | x, s)p(x | s)

p

([
z
x

])

= N
([

µs + Λsνs

νs

]
,

[
Ψs + ΛsΣT

s ΛT
s ΛsΣs

ΣT
s ΛT

s Σs

])
p(s)

(17)

where T denotes transpose. It follows from this joint distri-
bution that the conditional x given an observation z = zi is a
multidimensional Gaussian with mean

µx|s,z=zi
= E [x | s, z = zi ] = νs +

(
Σ−1

s + ΛT
s Ψ−1

s Λs

)−1

×
(
ΛT

s Ψ−1
s

)
(zi − µs − Λsνs) (18)

and covariance

Σx|s,z=zi
= E

[
xxT | s, z = zi

]
= Σs − ΣT

s ΛT
s

(
Ψs + ΛsΣT

s ΛT
s

)−1
ΛsΣs . (19)

Since Ψs is a diagonal matrix and Σs is assumed to be non-
singular, the inverse of the aforesaid expression can be effi-
ciently computed by using the matrix inversion lemma: (Ψs +
ΛsΣT

s ΛT
s )−1 = Ψ−1

s − Ψ−1
s Λs

(
Σ−1

s + ΛT
s Ψ−1

s Λs

)−1 ΛT
s Ψ−1

s .
Weights can be computed by marginalizing the joint proba-

bility p(z,x|s) over x to obtain

p (s | z = zi) =
p(z = zi | s)p (s)∑
s ′p(z = zi | s′)p (s′)

(20)

where

p (z = zi | s)

=
1

(2π)D/2 | Ψs + ΛsΣT
s ΛT

s |1/2

× exp

{
− 1

2
(zi − µs − Λsνs)

T (
Ψs + ΛsΣT

s ΛT
s

)−1

× (zi − µs − Λsνs)

}
. (21)

A. Integration Within a Bayesian Filtering Framework

It is significant to note that the results of inference are avail-
able in terms of multidimensional means and covariance ma-
trices for each component of the mixture of Gaussians (4)–(6).
Thus, the deterministic results of Isomap are transformed into
a generative likelihood model of natural features that can be
passed to a filtering algorithm.

In a filtering framework, Bayes theorem provides an incre-
mental and recursive probabilistic method for combining high-
dimensional visual observations Zk of a state xk , at time tk ,
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with a prior belief of the state p (xk−1). Features are extracted
in real time from incoming natural imagery and are represented
as a conditional probability distribution p(xk , sk |z = zk ), and
the resultant combination is a revised posterior distribution on
the state

p
(
xk , sk |Zk

)
=

p (z = zk |xk , sk ) p
(
xk , sk |Zk−1

)
p (z = zk |Zk−1)

(22)

where Zk =
{
zk ,Zk−1

}
is the set of high-dimensional visual

observations from all nodes in the decentralized sensor net-
work. The representation of the visual likelihoods as a Gaussian
mixture model simplifies this update step into an algebraic com-
putation of the product of two Gaussian mixture models.

V. EXAMPLE DATASETS

This section presents some experimental results using the
feature extraction, statistical learning, and inference techniques
with data from unstructured terrestrial and underwater environ-
ments. The probabilistic model can be used off-line to learn
the model parameters consisting of the means, loading, and
covariance matrices of the constituent conditional Gaussian dis-
tributions. This model can be used to instantiate visual feature
likelihoods in near-real-time from raw images for use in con-
junction with classical estimation algorithms for navigation and
tracking.

A. Autonomous Ground Vehicle (AGV)—Inference of
Underlying Visual States

A sample of about 9000 high-dimensional points physically
representing colors and textures of typical objects in a natural
environment such as sky, trees, bush, and grass was selected
from a sequence of images acquired from a camera mounted
on a ground vehicle at the Marulan test facility operated by the
Australian Centre for Field Robotics. Texture information was
included in the high-dimensional input space by convolving
11 × 11 pixel patches with a bank of Gabor wavelets [10] at
two scales and two orientations, resulting in an input space
dimensionality of 847. Isomap was used to compute a low-
dimensional embedding of the training data and the intrinsic
dimensionality of the manifold was estimated to be 3 through
an examination of the largest eigenvalues of the scatter matrix
representing the manifold [24]. The EM algorithm was then
used to learn the parameters of the generative model (4)–(6). The
learnt model was subsequently used to infer the low-dimensional
states within a typical test image that was acquired in the same
environment.

The top two eigenvectors of the computed low-dimensional
embedding and the components of the mixture model (repre-
sented by the covariance ellipses centered on the means) learnt
through EM are shown in Fig. 7. It is readily observed that image
patches corresponding to blue skies are grouped on the left side,
those representing bush are on the bottom right, while grass and
transitional patches are grouped between the two extremes. The
results of inference on a test image in terms of the means of the
eigenvectors scaled to gray-scale limits (0–255) for the top four
states are shown in Figs. 8–10.

Fig. 7. (Top) Sample image acquired by the AGV and (bottom) low-
dimensional embedding of randomly sampled high-dimensional image patches
used as the training set. Ellipses represent the covariance matrices of the mixture
model learnt through EM. Typical colors and textures in the environment are
captured in the low-dimensional representation.

B. Unmanned Underwater Vehicle (UUV)—Inference
of Underlying Visual States

A sample of about 17 000 high-dimensional points physically
representing colors and textures of typical objects in an under-
water environment such as beach sand and corals was selected
from a sequence of images [25] acquired from a camera mounted
onto the UUV Oberon, operated by the Australian Centre for
Field Robotics.

Texture information that is vital in the characterization of the
corals was included in the high-dimensional input space by con-
volving pixel patches with Gabor wavelets [10] and Isomap was
used to compute a low-dimensional embedding of the training
data and the intrinsic dimensionality of the manifold was esti-
mated to be 3 in this case. The learning algorithm was used to
learn a parametric model and the learnt model was used to infer
the low-dimensional states of a typical image acquired by the
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Fig. 8. Contour of the inferred means of the top eigenvector (right) on each
11 × 11 image patch. This state enables a clear discrimination of the sky (dark
blue, range ≈0–50) from all other visual groups in the image.

Fig. 9. Contour of inferred means of the second eigenvector. This state allows
separation of the bush (range ≈0–50) from the grass and the tracks in the scene.

Fig. 10. Contour of inferred means of the third eigenvector. This state allows
discrimination between the bush (≈125) and the tracks (≈150). Contours of
the bush as well as the tracks are also apparent.

UUV. The learned manifold is shown in Fig. 11, and the results
of inference are shown in Figs. 12 and 13.

C. Discussion

Each of the plots depicting the low-dimensional states must
be interpreted as a contour plot of the respective states in the
image plane. It is significant that every image patch consists of
847 correlated observations in the sensory space, while only a
few uncorrelated states are sufficient to capture the similarities
(or differences) between the patches after state inference.

The inferred low-dimensional states are reasonable in that
similar high-dimensional image patches (such as those corre-
sponding to sky, grass, trees, bush, sand, or corals) are assigned
similar low-dimensional states, as is to be expected from a para-
metric model of neighborhood-preserving manifold learning al-
gorithms. Each inferred low-dimensional state enables some
degree of discrimination between important objects in the scene

Fig. 11. (Top) Sample image acquired by the UUV and (bottom) low-
dimensional embedding of randomly sampled high-dimensional image patches
used as the training set. Ellipses represent the covariance matrices of the mixture
model learned through EM. Typical colors and textures in the environment are
captured in the low-dimensional representation.

Fig. 12. Contour of the inferred means of the top eigenvector on each 11 × 11
image patch. This state physically corresponds to the brightness of the patches.

Fig. 13. Contour of the inferred means of the second eigenvector. This state
seems to be correlated to the hue of the image patches.
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Fig. 14. (Top) Inferred low-dimensional states and (bottom) weighted av-
erage state estimate. The weighted average estimator assumes that the low-
dimensional state of a test sample is the weighted average of the k nearest
high-dimensional neighbors of the sample, with the weights being inversely
proportional to the high-dimensional distances. The trained manifold is repre-
sented in red and corresponding test samples are similarly color coded in each
figure.

such as the tree, bush, tracks, and the sky in case of the AGV or
sand and corals in case of the UUV.

The accuracy of the inferred low-dimensional states is quali-
tatively evaluated in Fig. 14. The inferred means of the computed
likelihoods of image patches in test images are overlaid on the
learnt manifold (color-coded red). They are compared to results
from an estimator that assumes that the low-dimensional state
of a test sample is the weighted average of the k nearest neigh-
bors (knn) of the sample. The normalized weights are assumed
to be inversely proportional to the high-dimensional distances.
It is observed from the color coding in these figures that there
is good qualitative agreement between the results of inference
and a knn based estimator. The probabilistic inference is more
robust due to the inherent stochasticity that encodes uncertainty
in the inferred states.

Fig. 15. Tracking of bush and tree in ten different frames of the sequence.
Green patches correspond to tree while magenta patches correspond to bush.
Note that bush and trees are very similar in terms of color and texture. The
proposed approach is able to distinguish them based on a nonlinear combination
of color and texture properties.

VI. NATURAL FEATURE TRACKING

This section investigates the applicability of the proposed
natural feature representation scheme to tracking and data asso-
ciation in an unstructured terrestrial environment. A sequence
of 1100 images was acquired from the AGV shown in Fig. 2.
The natural feature representation model is used in an attempt
to track and discriminate between the bush and trees through
the image sequence. This is a challenging problem as the bush
and trees present a remarkably similar appearance.

A. Representation Model

A set of 20 000 image patches of size 11 × 11 was randomly
sampled from the sequence and used as input to learn the prob-
abilistic natural feature model consisting of 32 mixture compo-
nents. The input space dimensionality was 847 corresponding
to three color intensities and four texture dimensions as reported
in Section V.

B. General Observations From Likelihood Instantiation

The learnt natural feature model was used to infer the
low-dimensional visual states of test images as described in
Section IV. For this experiment, no feature selection is per-
formed, the whole image is divided into patches, and inference
is computed for all patches. Numerical experiments consistently
demonstrated that the region of the manifold representing bush-
like image patches is completely explained by the mixture com-
ponent numbered 8 (of the 32 learned components). This is
evidenced by negligible mixture weights (20) in the other com-
ponents of the inferred likelihood. Similarly, mixture compo-
nents numbered 2, 7, 23, 27 were always associated with tree-
like patches.

C. Data Association and Segmentation

The regions selected by the feature extractor are subdivided
into patches that form high-dimensional observations for the
generative model. The magnitudes of the weights of the in-
stantiated likelihoods are used to identify bush or tree-like
patches. Fig. 15 demonstrates that image patches are correctly
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Fig. 16. (Blue line) KL divergence between “tree” patches in two frames.
(Red dot-dash line) KL divergence between “bush” patches in two frames and
KL divergence between “bush” and “tree” in the same frame. Every tenth frame
from the entire image sequence is used in these computations.

associated to their real world identities despite the ambient
changes and occlusions inherent in the image sequence. It also
shows that a reasonable segmentation of tree and bush can be
directly obtained by using this approach.

The average likelihood of all bush (as evidenced by the dom-
inance of the mixture component numbered 8) and tree-like
image patches (mixture components 2, 7, 23, 27) within a single
frame is computed. The discriminative capability of the like-
lihood is explored by computing the Kullback–Leibler (KL)
divergence [26] between similar (tree–tree, bush–bush) and dis-
tinct (tree–bush) natural features. The KL divergence provides
a relative measure of similarity between general probability dis-
tributions and is depicted for every tenth frame in the entire
image sequence in Fig. 16.

Fig. 16 shows that the KL divergence between physically
distinct features is about six times larger than that between the
same features in the selected frames. Thus, the proposed natural
feature representation significantly aids data association through
a comparison of visual likelihoods conditioned on the intrinsic
coordinates on the low-dimensional manifold.

D. Discussion

The unsupervised association of specific mixture components
to tree and bush-like image patches is quite remarkable and is a
direct consequence of the proposed natural feature representa-
tion. The choice of a nonlinear manifold learning scheme (i.e.,
Isomap) for the sensor data compression ensures that similar
natural features are positioned in close proximity on the learnt
manifold. This translates into the fact that specific mixture com-
ponents are quite likely to represent physically similar natural
features. The second important aspect that allows superior data
association is the choice of an optimal number of mixture com-
ponents. An inadequate number of mixture components would
result in representations where distinct natural features could be

Fig. 17. Results for KNN road segmentation. (a) Original image. (b) Seg-
mentation on the original high-dimensional space. (c) Segmentation on the
low-dimensional space.

explained by the same mixture components. An excessive num-
ber of mixture components could lead to an overconstrained
model that may not be representative of a broad class of visual
data [22]. An appropriate number of mixture components (32)
was chosen in this scenario through numerical experiments on
test image sequences.

VII. ROAD DETECTION

In order to evaluate the proposed approach in navigation tasks,
an experiment was performed for the detection of roads in urban
environments. Ten high-resolution images (1134 × 746) were
manually segmented from a dataset consisting of a 2-km trajec-
tory in the university campus. These ten images were selected
to consider different asphalts and illumination conditions found
in the campus.

A. Representation Model

As in the previous experiment, the images were divided into
11 × 11 nonoverlapping patches with texture computed with
Gabor filter convolutions. The total input dimensionality was
847 corresponding to three color intensities and four texture
dimensions.

B. Classification Results

Direct classification in the original space is computation-
ally very expensive given the dimensionality of the data. As
an alternative, the proposed approach can be used to provide a
low-dimensional and compact representation of the data for the
classifier. For this experiment, the K-nearest neighbor (KNN)
classifier [24] was used given its simplicity and capacity to
model highly nonlinear decision boundaries. The number of
nearest neighbors was 7, selected by performing cross valida-
tion. The performance of KNN is then compared by applying it
to both the original 847-D space and the 5-D space obtained with
the proposed approach. Fig. 17 shows an image of the dataset
and the segmentation obtained in both cases.

Results are presented as the average of a tenfold cross val-
idation. For each cross-validation case, nine images are used
for training and the remaining for testing. The average 10-fold
cross-validation result for KNN applied to the original space
was 85.21% of correct classification. When KNN is applied to
the compact low-dimensional space, the classification obtained
was 88.70%.
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C. Discussion

In addition to the improvement of about 3.5% in the classi-
fication results, the low-dimensional representation provides a
substantial improvement in terms of speed. While KNN takes
about an hour to classify an image in the original space, the same
classifier takes only around 5 s to classify the whole image with
low-dimensional features. The segmentation involves the clas-
sification of 7004 patches, which in KNN requires searching
the K-nearest neighbors from the training data. These results
demonstrate that the low-dimensional representation is able to
preserve most of the information content necessary to perform
classification. Note that road segmentation in urban environ-
ments can be quite a difficult task considering that colors and
textures of the roads can be very similar to the footpath or even
buildings.

VIII. CONCLUSION

The combination of nonparametric manifold learning algo-
rithms with statistical learning strategies leads to a consistent
description of natural features in unstructured environments.
While the entire learning procedure can be incorporated in the
training phase of these models that is performed off-line, infer-
ence can be performed in real-time on any extracted features to
compute likelihoods for the natural features as a Gaussian mix-
ture model. Natural features can thus be fully integrated within
existing non-Gaussian, nonlinear filtering algorithms through
the likelihood model so that tasks of estimation and data as-
sociation are significantly enhanced through a combination of
kinematic and visual states.

The experiments show the potential of the proposed frame-
work for different problems of perception in unstructured envi-
ronments. The probabilistic representation correctly associates
patches representing coral, sand, sky, bush, tree, and grass in
different places of the low-dimensional space. The tracking and
data association experiments demonstrate how the proposed ap-
proach can significantly facilitate these tasks.

Although the model is sufficient for perception of natural fea-
tures where colors and textures are in general good descriptors
of the objects, it does not incorporate shape information that is
more appropriate for human-made objects. Furthermore, given
the nature of the maximum likelihood estimator, prior informa-
tion is not considered. An interesting avenue of research in this
vein would be the combination of the proposed approach with
spatial statistics in a Bayesian learning framework where prior
information can be regarded together with knowledge coming
from the dataset.
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