
Article

Learning to reconstruct 3D structures
for occupancy mapping from depth and
color information

The International Journal of

Robotics Research

1–15

© The Author(s) 2018

Reprints and permissions:

sagepub.co.uk/journalsPermissions.nav

DOI: 10.1177/0278364918783061

journals.sagepub.com/home/ijr

Vitor Guizilini and Fabio Ramos

Abstract

Real-world scenarios contain many structural patterns that, if appropriately extracted and modeled, can be used to reduce

problems associated with sensor failure and occlusions while improving planning methods in such tasks as navigation and

grasping. This paper devises a novel unsupervised procedure that models 3D structures from unorganized pointclouds as

occupancy maps. Our methodology enables the learning of unique and arbitrarily complex features using a variational

Bayesian convolutional auto-encoder, which compresses local information into a latent low-dimensional representation

and then decodes it back in order to reconstruct the original scene, including color information when available. This

reconstructive model is trained on features obtained automatically from a wide variety of scenarios, in order to improve

its generalization and interpolative powers. We show that the proposed framework is able to recover partially missing

structures and reason over occlusions with high accuracy while maintaining a detailed reconstruction of observed areas.

To combine localized feature estimates seamlessly into a single global structure, we employ the Hilbert maps framework,

recently proposed as a robust and efficient occupancy mapping technique, and introduce a new kernel for reproducing

kernel Hilbert space projection that uses estimates from the reconstructive model. Experimental tests are conducted with

large-scale 2D and 3D datasets, using both laser and monocular data, and a study of the impact of various accuracy–speed

trade-offs is provided to assess the limits of the proposed methodology.

Keywords

Occupancy models, Hilbert maps, scene reconstruction, variational inference, convolutional auto-encoders

1. Introduction

In this day and age, the task of collecting information from

the environment is no longer an issue, as standard sensors

are able to output millions of points in a fraction of a sec-

ond. The challenge now is to store and interpret all the data

in a way that can be exploited by both human beings and

machines. One crucial task is the generation of environ-

ment models (i.e. maps) that are able to distinguish between

occupied and unoccupied areas in 3D space. The knowledge

of which areas can be safely traversed and which would

result in a collision is of key importance for applications

ranging from grasping and object manipulation to obstacle

avoidance and autonomous navigation.

Initial models would simply discretize the space (Elfes,

1989; Nüchter et al., 2007), maintaining an equally sized

grid to store independent information about each particu-

lar area. This approach, however, is very memory-intensive

and does not take into account spatial relationships between

cells. OctoMaps (Hornung et al., 2013) use a tree-like struc-

ture to recursively divide the space as necessary; this results

in a massive decrease in memory requirement and pro-

cessing time for grid-like occupancy mapping. Gaussian

process occupancy maps (O’Callaghan et al., 2009) and

Gaussian process implicit surfaces (Dragiev et al., 2011)

both address spatial dependency by producing a continu-

ous probabilistic function that maps location to occupancy

values. However, they both scale cubically in relation to

the number of training points, which limits their appli-

cability to larger datasets, especially when 3D informa-

tion is involved. Sparse approximations are commonly

used to increase efficiency (Kim and Kim, 2015; Jadidi

et al., 2017); however, these come with significantly more

complex models, and at the cost of accuracy in the final

reconstruction results.

A more recent approach, Hilbert maps (Ramos and Ott,

2015), projects data points into a higher-dimensional repro-

ducing kernel Hilbert space, based on a series of simple

kernel functions, and then uses linear classifiers to produce

School of Information Technologies, The University of Sydney, Australia

Corresponding author:

Vitor Campanholo Guizilini, School of Information Technologies, The

University of Sydney, Australia.

Email: vitor.guizilini@sydney.edu.au

http://crossmark.crossref.org/dialog/?doi=10.1177%2F0278364918783061&domain=pdf&date_stamp=2018-08-14

2 The International Journal of Robotics Research 00(0)

a continuous probabilistic occupancy function. The result-

ing framework maintains the spatial relationship between

inputs (capable of better data interpolation) and also does

not require space discretization (can be queried at arbi-

trary resolutions). Over the last couple of years, signif-

icant efforts have been made in extending this frame-

work to address larger datasets (Guizilini and Ramos,

2016), the learning of more complex features (Guizilini

and Ramos, 2017b), and dynamic environment model-

ing (Senanayake et al., 2016). However, these works are

restricted in the type of features that can be learned from

data. Guizilini and Ramos (2016) use a squared-exponential

kernel, which restricts the resulting features to ellipsoids,

while Guizilini and Ramos (2017b) propose the addition of

a planar surface kernel and devise a methodology to deter-

mine which feature is better suited to each portion of the

environment.

The main contribution of this paper is the development

of a novel methodology that allows the learning of unique

and arbitrarily complex 3D features to represent different

structures in the environment, based on a convolutional

variational auto-encoder (CVAE) trained on a series of fea-

tures extracted from previously observed maps, including

color information when available. The convolutional neural

network architecture has already been successfully applied

to several areas of computer vision, i.e. image classifica-

tion (He et al., 2016), object detection (Ren et al., 2015),

semantic segmentation (Ghiasi and Fowlkes, 2016), and

inpainting (Pathak et al., 2016), and is now transitioning

into 3D information, as more volumetric capturing tech-

niques (Newcombe et al., 2011) and large-scale repositories

(Wu et al., 2015) become publicly available. The number of

feature patterns available in the 3D space is exponentially

larger, making it much more difficult to design represen-

tative models of these features manually. Thus, the ability

to learn relevant patterns automatically, based on historical

data, and use the resulting representative models to recon-

struct newly observed areas of the input space, becomes

even more attractive.

In particular, we will be focusing on convolutional auto-

encoders (CAEs) (Masci et al., 2011; Pu et al., 2016), owing

to their ability to reason over spatial information to produce

latent low-dimensional representations; and their varia-

tional counterpart (Doersch, 2016), which infuses Bayesian

probabilistic inference into a deep learning framework to

produce a generative model for new structures. To the best

of our knowledge, this is the first time that deep variational

auto-encoders are used to learn complex environment fea-

tures for 3D occupancy mapping, thus significantly reduc-

ing gaps in the environment model due to occlusions, sparse

data, and partially observed objects. Within the Hilbert

maps framework, the benefits of such an approach are:

• More detailed reconstructions. The learned features are

not restricted to any single predetermined shape, and so

can better adapt to more complex structures.

• Sparser representation. Each feature is able to

cover a larger portion of the environment, mean-

ing that fewer clusters are necessary for an accurate

reconstruction.

• Better reasoning over data gaps. The model uses its

learned filters to reconstruct unobserved parts of the

environment, and thus is better able to deal with partial

occlusions and sensor failure.

The remainder of this paper is structured as follows.

We start by describing the theoretical background neces-

sary to implement the proposed technique, including an

overview of the Hilbert maps framework, the concept of

auto-encoders, and their extension to a convolutional varia-

tional scenario. We then proceed to introduce the proposed

methodology, detailing its various steps, such as automatic

feature extraction, the reconstructive model used to recover

partially observed structures, and the final occupancy map-

ping framework. Experimental results are then presented

and discussed, alongside comparisons with other occupancy

mapping techniques, both qualitatively and quantitatively.

Finally, we conclude the paper with a summary of its con-

tributions and discuss potential directions for future work

within this newly proposed framework.

This paper improves on the original work of Guizilini

and Ramos (2017a) by introducing the use of data col-

lected from visual sensors, particularly monocular cam-

eras, obtained using structure-from-motion techniques

(Waechter et al., 2014) based solely on image frames, with-

out the need of intrinsic calibration or initial pose esti-

mates. Furthermore, we show how the proposed frame-

work can be used to learn both color and depth infor-

mation simultaneously from extracted features, and then

include these estimates during the reconstruction pro-

cess. Lastly, we provide cross-comparisons between models

trained on data from different sensor types (i.e. reconstruct-

ing monocular data using a model trained on laser data,

and vice versa), showing that the proposed framework is

able to abstract over sensor differences and still produce

accurate reconstructions of partially observed structures

that outperform current state-of-the-art occupancy mapping

techniques.

2. Theoretical background

This section provides a brief overview of the two main

techniques used to create the proposed 3D scene recon-

struction algorithm. The Hilbert maps framework organizes

and indexes available data, extracting clusters that contain

potential feature information. The convolutional and varia-

tional auto-encoders are responsible for processing the said

information, training a generative model that encodes input

data into a low-dimensional latent feature vector and then

decodes it back to reconstruct different portions of the input

space.

Guizilini and Ramos 3

2.1. Hilbert maps

Ramos and Ott (2015) proposed a novel framework for

scene reconstruction, in which real-world complexity is

represented in a linear fashion by projecting spatial coor-

dinates into a high-dimensional feature vector. This high-

dimensional representation is known as a Hilbert space

(Sansone, 2012) and, furthermore, if point evaluation in this

space is a continuous linear functional (i.e. if ||f − g|| is

small for functions f and g, then |f (x)−g(x) | is also small

for all x), then it becomes a reproducing kernel Hilbert

space (Schölkopf et al., 2015). The dot product of these

feature vectors can be used to approximate popular kernels

found in the literature (Rasmussen and Williams, 2005); by

operating only in terms of kernel evaluations, we never have

to perform calculations explicitly in this high-dimensional

(and potentially infinite) feature space.

We assume a training dataset D = {xi, yi}
N
i=1, where

xi ∈ RD is a point in the D-dimensional space and yi =

{−1,+1} is its corresponding occupancy state. For exam-

ple, in a laser scanner, the return distances are treated as

occupied points, while the space traversed by each beam is

randomly sampled (e.g. once every meter, at arbitrary loca-

tions) and treated as unoccupied points. Note that uncer-

tainty can be naturally encoded into the framework by

using labels with values between [−1, 1], with 0 indicat-

ing no occupancy information; however, here only binary

labels are considered, without loss of generality. These input

points are projected into the reproducing kernel Hilbert

space using a feature vector function 8(x), and a classi-

fier is trained in this high-dimensional space to produce

a discriminative model p(y|x, w), where w are the param-

eters of this classifier. It can be shown (Komarek, 2004)

that linear separators are almost always adequate to sep-

arate classes in high-dimensional spaces, making simple

classifiers sufficiently accurate for this task. The result is

a compact and efficient model, whose parameters can be

trained in an online fashion and then queried at constant

time to produce probabilistic occupancy value estimates at

arbitrary resolutions.

2.2. Convolutional auto-encoders

The main purpose of unsupervised learning methods is to

extract useful features in unlabeled data, removing input

redundancies while preserving the essential aspects, which

are then used to produce robust and discriminative represen-

tations. Within this context, the encoder–decoder paradigm

is arguably the most commonly used (Hinton and Salakhut-

dinov, 2006); in this paradigm, the input is first pro-

jected into a lower-dimensional space (encoded) and then

expanded to reproduce the initial data (decoded). Tech-

niques using this paradigm include: low-complexity cod-

ing and decoding machines (Hochreiter and Schmidhuber,

1999), auto-encoders (Ranzato et al., 2007), energy-based

models (LeCun et al., 2006), and restricted Boltzmann

machines (Hinton, 2002).

Recently, deep architectures have taken over most learn-

ing tasks (Deng and Yu, 2014), providing an unprecedented

level of pattern recognition and data abstraction that is

inspired by biological systems. In particular, convolutional

neural networks excel with visual information (Ciresan et

al., 2011), because they preserve the input’s spatial locality

and neighborhood information in latent higher-level fea-

ture representations. In contrast to fully connected deep

architectures, which do not scale well to high-dimensional

inputs in terms of computational complexity, the number

of free parameters in a convolutional neural network does

not depend on input dimensionality, since they are locally

shared in each layer.

The concept of CAEs originated in the work of Masci

et al. (2011), as a hierarchical unsupervised feature

extractor that uses stochastic gradient descent to learn good

convolutional neural network initializations, thus avoiding

distinct local minima in highly non-convex objective func-

tions. It takes an input x ∈ RD and first maps it to a latent

representation h ∈ RD′ , using a deterministic function

hk = f (x, θ k)= σ
(

x ∗ W k + bk
)

(1)

with parameters θ = {W , b} and activation function σ

(the symbol ∗ denotes convolution). The same process is

repeated for each of the k channels, producing a latent

multi-channel representation H . The resulting “encoded”

vector is then used to reconstruct the input via a reverse

mapping

r = f ′(H , θ ′k)= σ

(

∑

k∈H

hk ∗ W̃ k + ck

)

(2)

with the parameters θ ′ = {W̃ , c} usually constrained such

that W̃ = W T, i.e. the same weights are used for encod-

ing the input and decoding the latent representation. These

parameters are optimized by minimizing an appropriate cost

function over the training set D = {xi, yi}
N
i=1, usually the

mean squared error between input and reconstructed states

E(θ)=
1

2N

N
∑

i=1

||xi − ri||
2 (3)

Similarly to standard neural networks, the back-propagation

algorithm is applied to compute the gradient of the error

function with respect to the parameters. For equation (3),

this can be easily obtained by convolution operations using

∂E(θ)

∂W k
= x ∗ δhk + hk ∗ δr (4)

where δh and δr are gradients of the hidden and recon-

structed states, respectively. The weights can then be

updated using standard stochastic gradient descent, in mini-

batches composed of training data. Furthermore, several

layers can be stacked to form a deeper hierarchy, with each

layer receiving as input the latent representation from the

4 The International Journal of Robotics Research 00(0)

previous layer (Figure 1(a)). A max-pooling layer (Scherer

et al., 2010) is often introduced between convolutional lay-

ers to generate translation invariant results, in which the

latent representation is down-sampled by a constant fac-

tor by taking the maximum value over non-overlapping

sub-regions. This extra step both reduces computational

complexity and improves filter selectivity, since now the

activation of each neuron is determined by a region of inter-

est, rather than a single value. During decoding, the max-

pooling operation is reversed by resizing the latent vector,

using such techniques as bilinear interpolation or nearest

neighbors.

2.3. Variational auto-encoders

Even though it is commonly classified as of the same type,

the variational auto-encoder actually has little to do with

classical auto-encoders (Doersch, 2016). In a nutshell, a

variational auto-encoder aims to optimize the parameters θ

of a function f (z, θ) so that, when a set of latent variables

z is sampled from a probability distribution P(z), there is a

high probability that f (z, θ) will resemble the input points

X = {xi}
N
i=1 from the dataset. In other words, it aims to

optimize the probability of X according to

P(X)=

∫

f (z, θ) P(z) dz =

∫

P(X |z, θ) P(z) dz (5)

In this scenario, z are the latent variables that encode

input data into a low-dimensional manifold and f (z, θ) is

substituted by a neural network, as seen in Figure 1(b).

Furthermore, we also assume that P(z)∼ N (0, I), follow-

ing the intuition that any D-dimensional distribution can

be generated by taking a set of D variables that are nor-

mally distributed and mapping them through a sufficiently

complicated function, such as f (z, θ).

This posterior probability, however, is intractable, so

a variational approach is taken to provide an analytical

approximation, in the form of a lower bound that can be

used for efficient calculations. We start by defining a new

function Q(z|X), which takes a value of X and returns a

distribution over z values that are likely to produce X back.

With some rearranging (Doersch, 2016), here omitted for

brevity, the lower bound to be optimized becomes

L = log P(X)−KL[Q(z|X) ||P(z|X)]

= E[log P(X |z)]− KL[Q(z|X) ||P(z)] (6)

In this equation, in the first line, we are attempting

to maximize P(X) while simultaneously minimizing the

Kullback–Leibler (KL) divergence KL[Q(z|X) ||P(z|X)]

(i.e. trying to approximate the two functions). In the sec-

ond line, it is possible to see some similarities to stan-

dard auto-encoders, since Q essentially “encodes" X into

z, while P is “decoding" z in order to reconstruct X .

When applying stochastic gradient descent to the right hand

side of equation (6), it is usually assumed that Q(z|X)=

N (z|µ(X , γ) , 6(X , γ)), where µ and 6 are arbitrary func-

tions with parameters γ that can be learned directly from

data (6 is also constrained to be a diagonal matrix). The

KL-divergence to be optimized can then be simplified to

KL[N (µ(X) , 6(X)) ||N (0, I)]

=
1

2

(

tr(6(X))+µ(X)T µ(X)−k − log ||6(X) ||
)

(7)

where k is the dimensionality of the distribution. Since get-

ting a good estimate of E[log P(X |z)] in equation (6) would

involve passing many samples of z through f , it is common

practice to take one sample of z and treat P(X |z) for that

z as a good approximation of E[log P(X |z)]. The resulting

equation can then be reparameterized (Doersch, 2016) to

allow closed-form gradient calculation, if we assume that

both distributions P(z) and Q(z|X) are continuous. The

resulting lower bound can then be maximized to produce

the optimal parameters θ that represent our neural network

weights, using standard back-propagation techniques. Note

that, since P(z) follows a unit Gaussian distribution, it is

possible to generate artificial outputs by sampling from this

distribution and then decoding the resulting latent variables.

3. Methodology

This section describes how the techniques previously men-

tioned can be combined to produce a robust 3D scene

reconstruction framework, capable of learning complex and

unique features for different portions of the environment

while probabilistically reasoning over missing information

and occlusions. The proposed framework consists of three

steps:

• Automatic feature extraction:

– Clustering. The input data are clustered to produce

roughly uniformly spaced points.

– Feature extraction. The clusters are used to gen-

erate feature vectors for different portions of the

input space.

• Reconstructive model:

– Training. Observed feature vectors are used to

train a CVAE model, minimizing the recon-

structed error.

– Inference. The trained CVAE model is used to

reconstruct new feature vectors.

• Occupancy mapping:

– Training. Observed reconstructed feature vectors

are used to update the weights of a Hilbert map.

– Inference. The trained Hilbert map is used to infer

the occupancy state of new reconstructed feature

vectors.

3.1. Automatic feature extraction

We start with an unorganized pointcloud D = {X , y} =

{xi, yi}
N
i=1 containing the spatial coordinate of each point

Guizilini and Ramos 5

Fig. 1. Visual representations of the deep learning architectures used in this paper.

and its corresponding occupancy value, as described in Sec-

tion 2.1. This unorganized pointcloud is clustered, to pro-

duce different local structures that will serve as features

and together describe the environment as a whole. Guizilini

and Ramos (2017b) proposed an alternative to the standard

k-means++ initialization algorithm (Arthur and Vassilvit-

skii, 2007), which selects the starting cluster seeds for fur-

ther optimization, i.e. using the standard k-means algorithm

(Kanungo et al., 2002). This technique was shown to out-

perform the k-means++ algorithm in terms of speed, while

allowing automatic determination of the number of clus-

ters necessary to describe the environment properly, given a

distance threshold.

Here, we build on the ASK-Means algorithm described

in Guizilini and Ramos (2017b) and propose Quick-Means,

an extension that further improves its computational speed

without significantly compromising accuracy, as can be

seen in Figure 2. The key insight is that, for the particular

application at hand, we are not interested in precise clus-

ter locations, but rather in regularly placed clusters, which

are within a given inner radius threshold ri given a distance

metric d(., .), here chosen to be the Euclidean distance.

Because of this, there is no need to calculate sampling

probabilities for each point, only relative distances; this sig-

nificantly improves computational speed. Furthermore, it

accommodates cluster overlapping by using an outer radius

threshold ro > ri, as a way to increase feature complexity

and model structures from different perspectives. Pseudo-

code for the Quick-Means initialization algorithm can be

found in Algorithm 1.

Once the M clusters are obtained, the next step is to

encode the information contained in each of them, so it

can be used as input by the reconstructive model. Here this

is done by generating a grid Gm = {xi, yi}
d
i=1 around the

cluster (Figure 3(b)), at a certain resolution rG and with

dimensionality d = dr−1
G e

D (unless noted otherwise, a value

of rG = 0.1 m was used throughout this paper). Each coor-

dinate is populated with the most common occupancy value

for data points that fall within that cell (−1 for unoccupied,

6 The International Journal of Robotics Research 00(0)

Fig. 2. Comparison of different clustering initialization tech-

niques: Random, k-means++ (Arthur and Vassilvitskii, 2007),

k-means|| (Bahmani et al., 2012), ASK-Means (Guizilini and

Ramos, 2017b), and the proposed Quick-Means algorithm (aver-

age of 50 runs with different random seeds).

Algorithm 1 Quick-Means initialization algorithm.

Require: pointcloud X with N points

radial inner ri and outer ro thresholds

minimum number of points per cluster k

distance function d(., .)

Ensure: clusters C

1: t← N % Number of available points

2: vi ← {0, 1, 2, . . . , N}% Aux. index vector

3: vj ← {0, 1, 2, . . . , N}% Aux. index vector

4: vb ← {0, 0, 0, . . . , 0}Ni=1 % Aux. Boolean vector

5: C ← {} % Empty cluster set

6: while t > 0 do

7: x∗ ← X [vi[rand(0, t)]]

8: M← {x | d(x∗, x) < ro} , ∀x ∈ X [vi[0, 1, . . . , t]]

9: if |M| > k then

10: C ←M

11: end if

12: for m ∈M do

13: i← index of m in X

14: if vb[i] == 0 and d(m, x) < ri then

15: vb[i] = 1, j← vj[i]

16: vi[j] = vi[--t]

17: vj[t] = vj[vi[j]] = j

18: end if

19: end for

20: end while

0 for unknown, and+1 for occupied)1. These grid represen-

tations act as the kernels k produced by each extracted clus-

ter, correlating the occupancy values of unobserved points

x∗ to observed data as defined by

k(x∗, G)=

{

0 if x∗ is outside G

yG
j for xG

j closest to x∗ otherwise

(8)

The feature vector 8 that projects an input point x into

the reproducing kernel Hilbert space (see equation (15)) is

given by a vector containing the kernel values produced by

all extracted clusters G, as shown in equation (9). For com-

putational reasons, we enforce sparsity by calculating only

the kernels related to a subset of the closest clusters and

ignoring the influence of all the others

8(x,G)=











k(x, G1)

k(x, G2)
...

k(x, GM)











(9)

Furthermore, to increase symmetry during the recon-

struction process, the data points in each grid Gm are trans-

formed to an aligned grid representation Hm (see equation

(10)) by: translation of Ḡm to a zero-median position; rota-

tion so their sorted eigenvectors Vm are, from the largest to

the smallest eigenvalue, aligned with the coordinate system;

and scaling by s so their largest dimension becomes unitary

(Figure 3(c)). These transformations are stored to be used

later, in order to recover the original grid representation

from an aligned reconstructed grid

Hm =
1

s

(

(Gm − Ḡm) Vm

)

(10)

3.2. Reconstructive model

Strictly speaking, the feature vector 8 previously described

could be inserted directly into the Hilbert maps frame-

work, combining individual cluster information to produce

occupancy values for any input point. However, this naive

approach does not address such issues as interpolation,

extrapolation, data gaps, partial occlusion, and so forth.

Because of this, we propose the use of a reconstructive

model that, as the name implies, takes these feature vec-

tors and reconstructs the observed structure based on how it

should look, according to prior information collected from

other datasets containing similar objects (see Figure 3).

Here, this reconstructive model is a CVAE, which com-

bines the concepts found in Sections 2.2 and 2.3 in a single

framework. The use of convolutional layers preserves spa-

tial relationships and greatly decreases the number of train-

ing parameters, while variational approximations are able to

encode information in a significantly smaller latent repre-

sentation, as will be demonstrated experimentally. Given an

aligned reconstructed grid H as input, the resulting encoded

Guizilini and Ramos 7

Fig. 3. The 2D feature extraction and reconstruction process.

vectors (i.e. the latent variables z, as introduced in equation

(5)) are generated from the probabilistic distribution

Q(z|H)= N
(

z|µ(H) , σ 2(H)
)

(11)

3.2.1. Learning occupancy values. As a simple 2D numer-

ical example, we start with a 32 × 32 × 1 aligned grid

representation, as shown in Figure 3(c) (for now only occu-

pancy values are considered; color reconstruction will be

addressed on the next subsection). During the encoding pro-

cess, this grid goes through a series of convolutional layers,

with different kernel filter sizes, a stride of 1, a max-pooling

of 2, and a rectified linear unit activation function (Glorot

et al., 2011). The use of max-pooling is important because it

both decreases computational cost and allows the next lay-

ers to extract patterns on higher scales (see Figure 1(a)). The

number of channels, conversely, increases as more kernels

filters are used to process the same input simultaneously,

emulating a larger number of possible useful patterns that

can be learned during the training process. For the exam-

ple at hand, the first layer produces 32 channels and each

one afterwards doubles this value, up to a maximum of 256

channels.

Once this process is complete, the output y of the last

convolutional layer is used to produce the mean and vari-

ance values (see equation (11)) that compose the latent

representation z, as depicted in Figure 1(b). Here, the

generation of these mean and variance values is defined as

µ(H) = Fully(y) (12)

σ (H) = Softplus(Fully(y)) (13)

where Fully(.) is a single-layer fully connected neural net-

work in which all inputs contribute to the calculation of

each output, and Softplus(.) is an activation function that

applies the nonlinearity log (1+ exp(.)) to each input, thus

ensuring positive variances. Note that, while y is shared in

the calculation of both mean and variance values, each one

has its own fully connected neural network Fully(.), which

is not shared between variables, even though they use the

same input information.

During the decoding process, the latent representation

goes through deconvolutional layers, with similar properties

to their convolutional counter-parts, and is expanded using

an unpooling operation (i.e. the input grid is resized to its

required output dimensions) (Zeiler and Fergus, 2014). The

resulting reconstructed grid H ′m has the same size as the

original representation, and contains occupancy estimates

according to the CVAE model, normalized between values

of [0, 1] using a Sigmoid(.) activation function. An exam-

ple of this process can be seen in Figure 3(d), in which a

partial observation is encoded into its latent representation

and then decoded back to produce a reconstruction of the

observed structure, including its missing parts. This recon-

structed aligned grid can be transformed back to its orig-

inal shape G′m by reversing the stored transformations for

that cluster (equation (14)) and is then used to produce the

reconstructed feature vector 8(x,G ′), as shown in equation

(9)

G′m = sV T
mH ′m + Ḡm (14)

The CVAE model is trained using mini-batches of recon-

structed aligned feature vectors obtained from clusters

extracted from the training datasets (Figure 3(a)), which

are assumed to contain similar structures to the ones found

in the evaluation dataset. As explained in Section 2.3, the

reconstruction error (i.e. similarity between input and out-

put) is minimized alongside the KL-divergence (i.e. the

variational approximation is as close as possible to the true

distribution). To avoid over-fitting, a dropout (Srivastava

et al., 2014) value of 0.8 was introduced in the last layer.

Dropout is a form of regularizer in which a percentage of

neurons are randomly “switched off", or set to zero.

3.2.2. Learning color information. When color informa-

tion is available (i.e. if visual data were used to generate

8 The International Journal of Robotics Research 00(0)

the input pointcloud), it is possible to incorporate these val-

ues into the reconstructive model itself, which will then be

able to estimate color and occupancy states simultaneously

during the reconstruction process. Following the simple 2D

example from before, the aligned input grid representation

now has shape 32× 32× 4, with each channel respectively

storing occupancy values and RGB color information, all

normalized to have a range between [0, 1]. Since only occu-

pied points have a corresponding color value, from triangu-

lated matched features, during grid generation, unoccupied

and unknown cells receive (0, 0, 0) (i.e. black). This infor-

mation serves only as a placeholder, so that the full grid

can be used as an input for the neural network, and has no

purpose during the reconstruction process.

The CVAE reconstructive model remains the same, albeit

now receiving as input a four-channel aligned grid, contain-

ing occupancy and RGB values, rather than a one-channel

aligned grid containing only occupancy values. This extra

information is convolved during the encoding process and

projected into a low-dimensional latent feature vector rep-

resentation, defined by equations (12) and (13). This latent

representation is then decoded to produce a reconstructed

output grid with the same dimensionality as the input, con-

taining both occupancy and RGB estimates, also normal-

ized using the Sigmoid(.) activation function to have range

between [0, 1]. Note that, while occupancy values represent

a state distribution indicating the probability that each cell

is occupied, color values indicate continuous functions that

quantify each of the primary colors for each cell.

3.3. Occupancy mapping

The reconstructed feature vectors 8(x,G ′) obtained pre-

viously are used to classify the input space, according to

the Hilbert maps methodology described in Section 2.1.

Here we employ a logistic regression classifier, in which the

probability of occupancy for a query point x∗ is given by

p
(

y∗ = 1|8′(x∗) , w
)

=
1

1+ exp
(

wT8′(x∗)
) (15)

where the dependencies on G ′ were removed for notation

clarity. To optimize the weight parameters w based on

information contained in D, we minimize the regularized

negative log-likelihood function

RNLL(w)=

N
∑

i=1

(

1+ exp
(

−yiw
T8(xi)

))

+ R(w) (16)

in which R(w) is a regularization term, such as the elas-

tic net (R(w)= λ1||w||
2
L2 + λ2||w||

1
L1, where λ1 and λ2 are,

respectively, the shrinkage and sparseness parameters). A

useful property of equation (16) is its suitability for stochas-

tic gradient descent optimization (Bottou, 2010), in which

information contained in each point, or batch of points, pro-

vides one small step toward a local minimum, calculated

as

wt = wt−1 − ηt

δ

δw
RNLL(w) (17)

where η > 0 is the learning rate, usually kept constant

or asymptotically decaying with the number of iterations.

The main benefit of this training methodology is that the

entire dataset never has to be touched at the same time,

which might be infeasible, owing to sheer size and mem-

ory requirements. Also, note that this technique lends itself

naturally to online learning, since new information can be

added to the current model by incrementally performing the

stochastic update step given by equation (17).

If color information is available, it can be incorporated

in the occupancy model to produce more detailed rep-

resentations of the reconstructed environment. Here we

employ a simple averaging system between all color esti-

mates that fall closest to the same grid cell (see equation

(8)), although other techniques might produce better results

through weighted interpolation (Shepard, 1968). During

isosurface calculation, only areas deemed occupied (i.e.

having an occupancy probability above a certain threshold)

receive this color information, thus producing a textured

reconstruction of the environment, including occluded and

partially observed structures.

4. Experimental results

The proposed framework was tested using 2D and 3D

datasets collected from various publicly available reposito-

ries, as depicted in Figure 4. The 2D datasets were obtained

using single slice laser range sensors, while the 3D datasets

were obtained using both rotating laser range sensors and

monocular rolling shutter cameras. Laser data from vari-

ous scans, collected at different locations during navigation,

were combined using SLAM6D (Nüchter et al., 2007) to

produce a single global pointcloud. Monocular data from

sequences of frames were combined using Structure-from-

Motion with Sparse Bundle Adjustment (Waechter et al.,

2014), to optimize camera poses and 3D feature locations

by minimizing reprojection errors. No color information

was used in laser data, while monocular data were assigned

an RGB color for each occupied point (unoccupied points

were always assigned a placeholder color of (0, 0, 0), i.e.

black).

After one dataset is selected for evaluation, the other

ones are clustered 20 times according to Section 3.1 with

different random seeds, to produce grid representations of

observed structures. These grid representations are then

used to train the reconstructive model described in Section

3.2. (Different models were trained for each configuration,

one for 2D laser data, another for 3D laser data, and a

third one for monocular data) Afterwards, the reconstructed

feature vectors are used to train a Hilbert map that pro-

duces occupancy values for any point in the input space,

as depicted in Section 3.3. Finally, the evaluation dataset is

clustered, its grid representations are reconstructed, and the

resulting feature vectors are used to generate the occupancy

values that describe the newly observed environment. Dur-

ing evaluation, different random seeds for clustering were

Guizilini and Ramos 9

Fig. 4. Examples of datasets used during training and evaluation in this paper, collected from various sources.

considered, and there were no significant changes in overall

results.

To test the reconstructive powers of the proposed frame-

work, random portions of the evaluation dataset were

removed, as a way to simulate data gaps and partial occlu-

sions. The objective is to maintain a detailed representa-

tion of observed structures (both occupied and unoccupied),

while also using this available information to reconstruct

any gaps. To this end, the following aspects were evaluated:

• Latent dimension. The effects of changing the number

of latent dimensions in the encoded vector;

• Cluster size. The effects of increasing the average clus-

ter size, which produces each extracted feature;

• Gap ratio. The effects of changing the relative size of

data gaps, in relation to average cluster size.

As a baseline, we selected a grid size of 64, a latent

dimension of 25 or 100 for 2D or 3D input data (multi-

plied by two if color information was also being encoded), a

network depth of four convolutional layers (with kernel fil-

ter sizes of 9, 7, 5, and 5, max-pooling of 2, and dropout of

0.8 on the last layer) and a gap ratio of 50% in relation to an

average cluster size of 5 m. The classification results, for 2D

and 3D datasets, respectively, can be found in Tables 1–3.

For comparison purposes, we provide results obtained using

both a convolutional variational auto-encoder (CVAE-HM)

as the reconstructive model and a standard convolutional

auto-encoder (CAE-HM). Furthermore, we provide results

obtained using the LARD-HM framework described by

Guizilini and Ramos (2016) for both 2D and 3D scenar-

ios, Gaussian process occupancy maps (O’Callaghan et al.,

2009) for 2D datasets, and OctoMaps (Hornung et al.,

2013) for 3D datasets. The Gaussian process occupancy

map framework is known for its ability to reason over data

gaps, while OctoMaps is considered the state-of-the-art in

3D occupancy mapping. In all cases, an area is consid-

ered occupied if its occupancy probability is greater than

60% and unoccupied if this probability is smaller than 40%

(values in between are considered unknown).

10 The International Journal of Robotics Research 00(0)

Table 1. Classification results for 2D laser datasets.

Method Data observed Recall Data gaps Recall

Precision Precision

GPOM 90.60% 80.83% 34.61% 29.94%

LARD-HM 80.44% 99.70% 53.58% 51.71%

CAE-HM 77.82% 74.89% 45.22% 42.45%

CVAE-HM 96.64% 94.75% 90.86% 86.29%

Table 2. Classification results for 3D laser datasets.

Method Data observed Recall Data gaps Recall

Precision Precision

OctoMap 95.59% 94.99% 16.85% 21.94%

LARD-HM 86.08% 96.58% 40.20% 38.62%

CAE-HM(MO) 54.74% 56.08% 32.01% 31.33%

CAE-HM(L) 61.92% 64.53% 36.20% 34.26%

CVAE-HM(MO) 84.77% 83.91% 76.48% 74.69%

CVAE-HM(L) 92.91% 89.68% 86.02% 81.27%

L: laser; M: monocular; O: occupancy.

Table 3. Classification results for 3D monocular datasets.

Method Data observed Recall Data gaps Recall

Precision Precision

OctoMap 93.87% 93.21% 18.33% 20.32%

LARD-HM 87.41% 96.02% 38.74% 39.44%

CAE-HM(L) 50.98% 53.72% 31.18% 29.42%

CAE-HM(MO) 58.91% 60.09% 31.66% 28.79%

CAE-HM(MC) 59.78% 59.11% 32.13% 30.94%

CVAE-HM(L) 78.64% 75.90% 69.58% 73.39%

CVAE-HM(MO) 88.92% 84.11% 84.36% 76.88%

CVAE-HM(MC) 90.07% 85.56% 84.59% 77.21%

C: color; L: laser; M: monocular; O: occupancy.

The precision-recall metric (Powers, 2011) was selected

for evaluation, because it depicts different aspects of results

(i.e. the ratios between true or false positives and negatives),

thus providing a better understanding of how occupied and

unoccupied areas are reconstructed. As shown in Tables 1–

3, the proposed method is able to achieve a considerable

higher reconstruction rate of data gaps in relation to other

techniques, while still providing competitive rates when

dealing with observed information (see Figures 5–7). Inter-

estingly, using the model trained on 3D laser data (L) to

reconstruct 3D monocular data (M), and vice versa, did not

significantly affect the results. This indicates that the pro-

posed framework is able to abstract over sensor differences,

and even changes in environment structures, and produce

features that can be applied equally to a wide variety of sce-

narios without further training. No color information (C)

was used during these cross-tests, only occupancy values

(O); however, for 3D monocular data, both models (with

and without color information) were generated, and the

introduction of color actually produced slightly more accu-

rate overall results. We attribute this behavior to a tendency

in similar structures to also share similarities in color; this

facilitates the generation of similar shapes during the recon-

struction process, since these two properties are estimated

simultaneously.

Additionally, these results show that the introduction of

a variational component into the CAE framework is cru-

cial in achieving satisfactory reconstruction results, espe-

cially with smaller latent dimensions. A comparison of

the effects of changing this dimensionality can be found

in Figure 8, where we see that CAE-HM requires more

dimensions to converge and still achieves worse results, in

terms of both observed information and data gaps. Interest-

ingly, the reconstruction rate of data gaps starts to decrease

after the latent dimensionality reaches a certain value, a

phenomenon we attribute to over-fitting, since a higher-

dimensional vector is better able to fit training data and

thus learns to model gaps as part of the reconstructed

Guizilini and Ramos 11

Fig. 5. The 2D scene reconstruction results from Table 1. (a) The LARD-HM framework is used; it is clear that it is unable to reconstruct

such large-scale features in detail. (b) The same dataset is reconstructed using the proposed CVAE-HM framework. (c) Enlarged areas

are shown, depicting regions in which there were data gaps (white dots) to be reconstructed.

features. Fine-tuning the network topology, as well as the

introduction of recently proposed normalization techniques

(Klambauer et al., 2017), would probably address this short-

coming and produce better results; however, this was not

explored here and is left for future work.

Another comparison was made in relation to average

cluster size, which dictates the size of features extracted

from the environment and, by extension, their complexity.

Figure 5(a) shows that the standard LARD-HM frame-

work is already unable to reconstruct environments with

an average cluster size of 5 m, while CVAE-HM is able

to achieve a much more detailed representation. Figure 9

shows results for CVAE-HM under different average clus-

ter sizes, for both observed information and data gaps. As

12 The International Journal of Robotics Research 00(0)

Fig. 6. The 3D scene reconstruction results from Table 2, using CVAE-HM on laser data. Note how the reconstructive model is able to

reason over sparse pointclouds to produce a more solid representation of structures, and also extrapolates available information to areas

not covered by sensors. It is also capable of completing objects based on partial views, such as cars (top right image) and trees (top left

and right images). Interestingly, it learns to consistently fill in gaps produced by shadows, completing partially occluded structures (top

and bottom left images).

expected, smaller cluster sizes produce better classification

results, since the structures to be learned are simpler; how-

ever, they are also only able to reconstruct smaller gaps. As

the average cluster size increases, larger gaps can be recon-

structed; however, the reconstructive model itself starts to

suffer, because it is unable to learn such complex features

in the first place. As an empirical observation, we estimate

that the gap size should be roughly equal to half the average

cluster size for an optimal reconstruction. Note that these

cluster sizes are much larger than those usually found in

the literature for similar tasks, such as object detection and

scene reconstruction (Song and Xiao, 2014; Lai et al., 2014;

Ruhnke et al., 2010).

Lastly, in Figures 6 and 7, we can see 3D reconstruction

results in areas that were not deliberately removed from

the evaluation dataset, such as shadows and partial occlu-

sions, for both 3D laser and monocular data. Owing to the

large abundance of similar objects in the training dataset,

and large enough features to encompass a significant por-

tion of the structure, the reconstructive model was able to

reason over sparser areas and data gaps to recover origi-

nal unobserved shapes, including color information when

available. The use of a higher resolution to generate the

grid representations would most probably result in more

detailed reconstructions; however, owing to the high com-

putational cost and memory requirements, this assumption

was not explored here and is left for future work. In fact, the

occupancy maps depicted here take roughly 5 s to produce

from raw input pointcloud, using a modern GPU-enabled

computer (Titan Pascal X), making the proposed approach

Guizilini and Ramos 13

Fig. 7. The 3D scene reconstruction results from Table 3, using CVAE-HM on monocular data. Here, both occupancy values and RGB

colors are learned, and the reconstructive model is able to extrapolate this information to areas not covered by sensors or without enough

texture for visual feature extraction.

Fig. 8. Effects of changing the number of latent dimensions in

CAE-HM and CVAE-HM, for the 3D test dataset.

still incapable of online estimation. This is mostly because

of the high computational cost and memory requirements

of 3D convolution, which will also be the subject of future

research.

Fig. 9. Effects of changing the size of gaps in CVAE-HM for

different average cluster sizes, for the 3D test dataset.

5. Conclusion

This paper introduces a novel methodology for 3D occu-

pancy mapping, which utilizes CVAEs to learn a low-

dimensional manifold of observed structures. Once this

14 The International Journal of Robotics Research 00(0)

reconstructive model is trained, new structures can be

encoded and then decoded to produce occupancy estimates,

that are then combined using the Hilbert maps framework.

While not achieving the level of detail currently found in

other state-of-the-art reconstruction techniques when deal-

ing with observed information, the proposed methodology

is able to consistently reason over data gaps and partial

occlusions with an accuracy significantly greater than any

of the other techniques considered here.

Future work will address neural network over-fitting

while focusing on performance and level of detail, partic-

ularly through the use of continuous convolutions and the

sparse representation recently introduced by Riegler et al.

(2016). The use of different loss functions, as described

by Pathak et al. (2016), will also be explored as a way

to improve convergence speed and level of detail. Further-

more, we will explore color reconstruction when this infor-

mation is not available in the first place (i.e. estimating color

values in laser data based on a model trained on monocular

data), as a way to improve environment representation with-

out introducing extra sensors during inference time. From

an application perspective, the proposed framework will

be deployed in autonomous navigation tasks, providing a

means to reconstruct unobserved areas of the environment,

owing to sensor failures or occlusions, and thus improve the

performance of path planning algorithms.

Acknowledgments

The GPU cards used to conduct this work were donated by the

NVIDIA corporation.

Funding

This research was supported by the Faculty of Engineering &

Information Technologies, The University of Sydney, under the

Faculty Research Cluster Program.

ORCID iD

Vitor Guizilini https://orcid.org/0000-0002-8715-8307

Notes

1. Only integer values for occupancy were used in this work;

however, the framework can be trivially modified to reason

over occupancy probabilities in the range [−1,+1].

References

Arthur D and Vassilvitskii S (2007) k-means++: The advantages

of careful seeding. In: ACM-SIAM symposium on discrete

algorithms (SODA), New Orleans, LA, 7–9 January 2007,

pp. 1027–1035. Philadelphia, PA: Society for Industrial and

Applied Mathematics.

Bahmani B, Moseley B, Vattani A, et al. (2012) Scalable

k-means++. Proceedings of the VLDB Endowment 5(7):

622–633.

Bottou L (2010) Large-scale machine learning with stochastic

gradient descent. In: Proceedings of the international con-

ference on computational statistics (COMPSTAT) (eds. Y

Lechevallier and G Saporta), Paris, France, 22–27 August

2010, pp. 177–186. Berlin: Springer-Verlag.

Ciresan D, Meier U, Masci J, et al. (2011) Flexible, high perfor-

mance convolutional neural networks for image classification.

In: 22nd international joint conference on artificial intelli-

gence (IJCAI), Barcelona, Spain, 19–22 July 2011. Palo Alto,

CA: AAAI Press.

Deng L and Yu D (2014) Deep learning: Methods and applica-

tions. Foundations and Trends in Signal Processing 7(3–4):

197–387.

Doersch C (2016) Tutorial on variational autoencoders. arXiv

arXiv:1606.05908.

Dragiev S, Toussaint M, and Gienger M (2011) Gaussian process

implicit surfaces for shape estimation and grasping. In: IEEE

international conference on robotics and automation (ICRA),

Shanghai, China, 9–13 May 2011, pp. 2845–2850. Piscataway,

NJ: IEEE.

Elfes A (1989) Occupancy grids: A probabilistic framework

for robot perception and navigation. Ph.D. Thesis, Carnegie

Mellon University, USA.

Ghiasi G and Fowlkes C (2016) Laplacian pyramid reconstruc-

tion and refinement for semantic segmentation. In: Leibe B,

Matas J, Sebe N, and Welling M (eds.) Computer Vision: ECCV

2016 (Lecture Notes in Computer Science, vol. 9907). Cham:

Springer.

Glorot X, Bordes A, and Bengio Y (2011) Deep sparse rectifier

neural networks. Proceedings of Machine Learning Research

15: 315–323.

Guizilini V and Ramos F (2016) Large-scale 3D scene reconstruc-

tion with Hilbert maps. In: IEEE international conference on

intelligent robots and systems (IROS), Daejeon, South Korea,

9–14 October 2016, pp. 3247–3254. Piscataway, NJ: IEEE.

Guizilini V and Ramos F (2017a) Learning to reconstruct 3D

structures for occupancy mapping. In: Robotics: Science and

systems (eds. N Amato, S Srinivasa, N Ayanian, et al.), Cam-

bridge, MA, USA: MIT Press, 12–16 July 2017.

Guizilini V and Ramos F (2017b) Unsupervised feature learn-

ing for 3D scene reconstruction with occupancy maps. In: 31st

AAAI conference on artificial intelligence, San Francisco, CA,

USA, 4–10 February 2017. Palo Alto, CA: AAAI Press.

He K, Zhang X, Ren S, et al. (2016) Deep residual learning for

image recognition. In: IEEE conference on computer vision and

pattern recognition (CVPR), Las Vegas, NV, USA, 27–30 June

2016, pp. 770–778. Piscataway, NJ: IEEE.

Hinton G (2002) Training products of experts by mini-

mizing contrastive divergence. Neural Computation 14(8):

1771–1800.

Hinton G and Salakhutdinov R (2006) Reducing the dimen-

sionality of data with neural networks. Science 5786(313):

504–507.

Hochreiter S and Schmidhuber J (1999) Feature extraction

through LOCOCODE. Neural Computation 11(3): 679–714.

Hornung A, Wurm K, Bennewitz M, et al. (2013) Octomap: An

efficient probabilistic 3D mapping framework based on octrees.

Autonomous Robots 34(3): 189–206.

Jadidi M, Miro J, and Dissanayake G (2017) War ped Gaus-

sian processes occupancy mapping with uncertain inputs. IEEE

Robotics and Automation Letters 2(2): 680–687.

Guizilini and Ramos 15

Kanungo T, Mount D, Netanyahu N, et al. (2002) An efficient

k-means clustering algorithm: Analysis and implementation.

IEEE Transactions on Pattern Analysis and Machine Intelli-

gence 24(7): 881–892.

Kim S and Kim J (2015) GPmap: A unified framework for robotic

mapping based on Gaussian processes. In: Mejias L, Corke

P, and Roberts J (eds.) Field and Service Robotics (Springer

Tracts in Advanced Robotics, vol. 105). Cham: Springer, pp.

319–332.

Klambauer G, Unterthiner T, Mayr A, et al. (2017) Self-

normalizing neural networks. arXiv arXiv:1706.02515.

Komarek P (2004) Logistic regression for data mining and high-

dimensional classification. Ph.D. Thesis, Carnegie Mellon Uni-

versity, USA.

Lai K, Bo L, and Fox D (2014) Unsupervised feature learning

for 3D scene labeling. In: IEEE international conference on

robotics and automation (ICRA), Hong Kong, China, 31 May–7

June 2014, pp. 3050–3057. Piscataway, NJ: IEEE.

LeCun Y, Chopra S, Hadsell R, et al. (2006) A Tutorial on Energy-

Based Learning. Cambridge, MA: MIT Press.

Masci J, Meier U, Ciresan D, et al. (2011) Stacked convolutional

auto-encoders for hierarchical feature learning. In: Honkela

T, Duch W, Girolami M, et al. (eds.) Artificial Neural Net-

works and Machine Learning: ICANN 2011 (Lecture Notes in

Computer Science, vol. 6791). Berlin: Springer, pp. 52–59.

Newcombe R, Izadi S, Hilliges O, et al. (2011) KinectFusion:

Real-time dense surface mapping and tracking. In: 10th IEEE

international symposium on mixed and augmented reality,

Basel, Switzerland, 26–29 October 2011, pp. 127–136. Piscat-

away, NJ: IEEE.

Nüchter A, Lingemann K, Hertzberg J, et al. (2007) 6D SLAM—

3D mapping outdoor environments. Journal of Field Robotics

24(8): 699–722.

O’Callaghan S, Ramos F, and Durrant-Whyte H (2009) Contex-

tual occupancy maps using Gaussian processes. In: IEEE inter-

national conference on robotics and automation (ICRA), Kobe,

Japan, 12–17 May 2009, pp. 1054–1060. Piscataway, NJ: IEEE.

Pathak D, Krähenbühl P, Donahue J, et al. (2016) Context

encoders: Feature learning by inpainting. In: IEEE confer-

ence on computer vision and pattern recognition (CVPR), Las

Vegas, NV, USA, 27–30 June 2016, pp. 2536–2544. Piscataway,

NJ: IEEE.

Powers DMW (2011) Evaluation: From precision, recall and F-

measure to ROC, informedness, markedness and correlation.

Journal of Machine Learning Technologies 2(1): 37–63.

Pu Y, Gan Z, Henao R, et al. (2016) Variational autoencoder

for deep learning of images, labels and captions. In: 30th

international conference on neural information processing sys-

tems (NIPS’16), Barcelona, Spain, 5–10 December 2016, pp.

2360–2368. Red Hook, NY: Curran Associates Inc.

Ramos F and Ott L (2015) Hilbert maps: Scalable continu-

ous occupancy mapping with stochastic gradient descent. In:

Robotics: Science and systems (eds. LE Kavraki, D Hsu, and J

Buchli), Rome, Italy: MIT Press Cambridge, MA, USA, 13–17

July 2015.

Ranzato M, Huang F, and LeCun Y (2007) Unsupervised learn-

ing of invariant feature hierarchies with applications to object

recognition. In: IEEE conference on computer vision and pat-

tern recognition (CVPR), Minneapolis, MN, USA, 17–22 June

2007. Piscataway, NJ: IEEE.

Rasmussen C and Williams C (2005) Gaussian Processes for

Machine Learning. Cambridge, MA: MIT Press.

Ren S, He K, Girshick R, et al. (2015) Faster R-CNN: Towards

real-time object detection with regional proposal networks. In:

Advances in neural information processing systems (NIPS),

Montréal, Canada: MIT Press Cambridge, MA, USA, 7–12

December 2015.

Riegler G, Ulusoy A, and Geiger A (2016) Octnet: Learning deep

3D representations at high resolutions. In: IEEE conference on

computer vision and pattern recognition (CVPR), Honolulu,

HI, USA, 21–26 July 2017, pp. 6620–6629. Piscataway, NJ:

IEEE.

Ruhnke M, Steder B, Grisetti G, et al. (2010) Unsupervised learn-

ing of compact 3D models based on the detection of recurrent

structures. In: IEEE international conference on intelligent

robots and systems (IROS), Taipei, Taiwan, 18–22 October

2010, pp. 2137–2142. Piscataway, NJ: IEEE.

Sansone G (2012) Orthogonal Functions: Revised English Ver-

sion. New York, NY: Dover Books on Mathematics.

Scherer D, Muller A, and Behnke S (2010) Evaluation of pooling

operations in convolutional architectures for object recognition.

In: Diamantaras K, Duch W, and Iliadis LS (eds.) Artificial

Neural Networks: ICANN 2010 (Lecture Notes in Computer

Science, vol. 6354). Berlin: Springer, pp. 92–101.

Schölkopf B, Muandet K, Fukumizu K, et al. (2015) Com-

puting functions of random variables via reproducing kernel

Hilbert space representations. Statistics and Computing 25(4):

755–766.

Senanayake R, Ott L, Callaghan S, et al. (2016) Spatio-temporal

Hilbert maps for continuous occupancy representation in

dynamic environments. In: Advances in neural information

processing systems (NIPS), Barcelona, Spain, 5–10 December

2016, pp. 3925–3933. Red Hook, NY: Curran Associates Inc.

Shepard D (1968) A two-dimensional interpolation function for

irregularly-spaced data. In: 23rd ACM national conference,

Las Vegas, NV, USA, 27–29 August 1968, pp. 517–524. New

York, NY: ACM.

Song S and Xiao J (2014) Sliding shapes for 3D object detection

in depth images. In: Fleet D, Pajdla T, Schiele B, et al. (eds.)

Computer Vision: ECCV 2014 (Lecture Notes in Computer

Science, vol. 8694). Cham: Springer. pp. 634–651.

Srivastava N, Hinton G, Krizhevsky A, et al. (2014) Dropout: A

simple way to prevent neural networks from overfitting. Journal

of Machine Learning Research 15: 1929–1958.

Waechter M, Moehrle N, and Goesele M (2014) Let there be

color! Large-scale texturing of 3D reconstructions. In: Fleet

D, Pajdla T, Schiele B, et al. (eds.) Computer Vision: ECCV

2014 (Lecture Notes in Computer Science, vol. 8693). Cham:

Springer, pp. 836–850.

Wu Z, Song S, Khosla A, et al. (2015) 3D ShapeNets: A deep

representation for volumetric shapes. In: IEEE conference

on computer vision and pattern recognition (CVPR), Boston,

MA, USA, 7–12 June 2015, pp. 1912–1920. Piscataway, NJ:

IEEE.

Zeiler M and Fergus R (2014) Visualizing and understanding

convolutional networks. In: Proceedings of the European Con-

ference on Computer Vision (ECCV). In: Fleet D, Pajdla T,

Schiele B, et al. (eds.) Computer Vision: ECCV 2014 (Lec-

ture Notes in Computer Science, vol. 8689). Cham: Springer,

pp. 818–833

