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Abstract

The ability to model the surrounding space and determine which areas are occupied is of key importance in many robotic

applications, ranging from grasping and manipulation to path planning and obstacle avoidance. Occupancy modeling is

often hindered by several factors, such as: real-time constraints, that require quick updates and access to estimates; quality

of available data, that may contain gaps and partial occlusions; and memory requirements, especially for large-scale

environments. In this work we propose a novel framework that elegantly addresses all these issues, by producing an efficient

non-stationary continuous occupancy function that can be efficiently queried at arbitrary resolutions. Furthermore, we

introduce techniques that allow the learning of individual features for different areas of the input space, that are better

able to model its contained information and promote a higher-level understanding of the observed scene. Experimental

tests were conducted on both simulated and real large-scale datasets, showing how the proposed framework rivals current

state-of-the-art techniques in terms of computational speed while achieving a substantial decrease (of orders of magnitude)

in memory requirements and demonstrating better interpolative powers, that are able to smooth out sparse and noisy

information.
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1. Introduction

In this day and age, obtaining information from the sur-

rounding environment is no longer an issue in mobile

robotics as standard sensors are able to output million of

points in a fraction of a second. Stereo and RGBD cam-

eras produce per-pixel scale-aware dense point clouds that

include color information, and 3D laser range sensors pro-

duce snapshots of nearby structures at sub-degree resolu-

tion and sub-centimeter accuracy. The challenge now is to

process and store all this raw information in a useful and

efficient manner that can be exploited by both humans and

machines. Furthermore, a successful model should be able

to extract patterns that describe the same environment in a

much more compact way, thus removing redundancy and

introducing semantically meaningful representations.

One key application of this collected information is esti-

mating which areas of the surrounding space are empty and

therefore can be safely traversed by a moving vehicle, and

which are occupied and would result in a collision. This

ability lies at the foundation for many other research areas

in robotics, ranging from grasping and object manipulation

to obstacle avoidance and autonomous navigation. A model

that represents the occupancy state of different areas in the

input space is known as an occupancy map (Thrun et al.,

2005) (Figure 1), and other desired properties of such a

model include:

1. probabilistic reasoning, taking into account impreci-

sions in sensor measurements;

2. spatial relationships, use available information to

improve its estimates in unobserved areas;

3. incremental learning, allow updates during navigation,

as more information is collected by the sensors;

4. update and query efficiency, real-time access to

model, both to incorporate and retrieve information.

Initial attempts at producing occupancy maps would sim-

ply discretize the input space (Elfes, 1989; Moravec, 1996),

maintaining a grid of equally sized cells that store the occu-

pancy state of that particular area, either as a binary value or

a probability distribution. This approach, however, does not

take into account spatial relationships (property 2), since

as a simplification technique each cell is treated indepen-

dently from each other. It is also very memory-intensive,
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particularly when dealing with finer resolutions and higher

dimensions, which severely limits its applicability to large-

scale and detailed datasets (property 4). Owing to that, over

the years substantial work has been done to improve this

initial model and circumvent some of its limitations under

particular circumstances, such as extension to 3D environ-

ments (Nüchter et al., 2007), construction of hybrid eleva-

tion maps (Douillard et al., 2010), and use of visual textures

to simulate environment features (Mason et al., 2013).

Nowadays, the state-of-the-art technique in 3D grid-

based occupancy mapping is arguably OctoMaps, initially

proposed by Hornung et al. (2013). Rather than using

equally sized cells, the OctoMaps framework employs a

well-known tree-like structure (an octree) to recursively

divide the space into smaller areas. Branches with simi-

lar classification are merged or pruned, to control memory

requirements and access time (property 4), and new infor-

mation is incorporated by simply adding internal nodes

(property 3). However, each node is still treated inde-

pendently, and its occupancy state is not reflected in the

surrounding space (property 2), which leads to gaps and

uninformed regions, particularly when dealing with sparse

data.

An alternative to grid-based occupancy maps is the use

of kernel methods (Hofmann et al., 2008), in which a

continuous function is learned based on available infor-

mation that maps input space points directly into out-

put occupancy probability states. The resulting model can

be queried at arbitrary resolutions and naturally captures

spatial relationships between data points, thus offering a

formal methodology to reason over the presence of occlu-

sions and data gaps. Callaghan and Ramos (2012) modeled

this continuous function as a Gaussian process (Rasmussen

and Williams, 2005), a non-parametric Bayesian regression

technique that uses a set of functions to learn relationships

between observed points, and is then able to extrapolate this

information and estimate the state of unobserved areas of

the input space.

The resulting framework, called Gaussian process occu-

pancy maps (GPOM), and its corresponding extensions

over the past few years, such as dealing with dynamic

environments (Callaghan and Ramos, 2015), is currently

considered the state-of-the-art in kernel-based occupancy

mapping. Dragiev et al. (2011) proposed a novel kernel with

spline regularization for the modeling of implicit surfaces,

and in Hadsell et al. (2010) the issue of uneven sampling

was addressed for the task of 3D terrain modeling. All these

approaches, however, do not scale to larger datasets (prop-

erty 4), since the computational complexity of the Gaussian

process framework increases cubically with the number of

training points. The use of overlapping local approxima-

tions (Soohwan and Jonghyuk, 2013) is able to amortize this

increase in computational complexity, but these solutions

are circumstantial and do not address the underlying prob-

lem of efficient data processing for large-scale modeling,

especially in 3D environments.

In Ramos and Ott (2015), a novel continuous occupancy

technique was introduced, called Hilbert maps, in which

real-world complexity is represented linearly by operating

on a high-dimensional feature vector, that projects obser-

vations into a reproducing kernel Hilbert space (RKHS)

(Schölkopf and Smola, 2001). In this high-dimensional

space, classification can be performed using simple linear

techniques, resulting in a continuous occupancy function

(property 2) that can be efficiently updated and queried at

arbitrary resolutions (properties 3 and 4). Since its intro-

duction, substantial work has been done to further develop

the Hilbert maps framework, such as: introduction of local

length scales (Guizilini and Ramos, 2016) to achieve non-

stationarity in the input space; automatic kernel selection

(Guizilini and Ramos, 2017), to improve the modeling of

different structures; overlapping local maps (Doherty et al.,

2016), as a way to fuse individual scans into a single global

map; and extension to dynamic environments (Senanayake

et al., 2016) to address temporal dependencies between

scans.

This paper improves on the foundations of the Hilbert

maps framework itself, and proposes novel training and

inference methodologies that drastically increase computa-

tional speed, thus allowing its efficient use in large-scale 3D

occupancy mapping applications. The resulting framework,

entitled efficient Hilbert maps (EHM) rivals current state-

of-the-art occupancy mapping techniques, both in terms of

computational speed and accuracy, while providing robust

results in the presence of sparse and noisy data. Further-

more, it benefits from all the above mentioned extensions,

and therefore can be considered the baseline for develop-

ment of new Hilbert maps applications. In summary, the

main contributions of this paper are as follows.

• Unsupervised feature learning. A novel clustering

technique that automatically determines the number

of features necessary to properly describe the envi-

ronment, alongside their corresponding positions and

length-scales.

• Incremental training. Novel training strategies that

produce optimal weights for the occupancy classifier in

a fraction of previously achieved times. We also show

how new observations can be efficiently incorporated

into the current model, to account for online learning

and changing environments.

• Efficient grid reconstruction. A novel methodology

for the 3D reconstruction of the current Hilbert Maps

model at arbitrary resolutions, thus allowing the quick

rendering of observed structures.

We then proceed to describe some of its extensions that

serve as the basis for the proposed training and inference

methodologies

The remainder of this paper is organized as follows: Sec-

tion 2 provides an overview on the Hilbert Maps framework,

as introduced in Ramos and Ott (2015) and later extended

in Ramos and Ott (2016). Section 3 introduces the proposed
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Fig. 1. Examples of occupancy maps produced using different techniques. In (a) each cell stores independent occupancy probabilities,

whereas in (b) a continuous function is generated, including occupancy mean and variance estimates. In (c) an octree is used to hierar-

chically store data points at varying resolution levels, and (d) uses a feature vector to project data points into a high-dimensional space

for efficient linear classification.

training and inference methodologies, alongside several

extensions in feature generation and kernel placement, that

allow the efficient deployment of the Hilbert maps frame-

work. Experiments conducted in large-scale simulated and

real environments are presented and discussed in Section 4.

Finally, Section 5 concludes the paper and proposes direc-

tions for future work in the area of 3D occupancy mapping,

using the methodologies described here.

2. Hilbert maps overview

The Hilbert maps framework, first introduced in Ramos and

Ott (2015), proposes the modeling of real-world complexity

by projecting spatial coordinates x into a high-dimensional

feature representation known as a Hilbert space (Sansone,

2012). Furthermore, if point evaluation in this space is a

continuous linear functional, i.e. if ‖f − g‖ is small for

functions f and g, then |f (x)−g(x) | is also small for all

x, then it becomes a RKHS (Schölkopf et al., 2015). This

projection is performed using a feature vector 8(x), and the

dot product of these feature vectors can be used to approxi-

mate popular kernels found in the literature for nonlinear

classification (Rasmussen and Williams, 2005). By oper-

ating only in terms of kernel evaluations we never have

to explicitly perform calculations in this high-dimensional

(and potentially infinite) feature space.

Furthermore, it can be shown (Komarek, 2004) that linear

separators are almost always adequate to separate between

classes in sufficiently high-dimensional spaces. Therefore,

in the RKHS a simple classifier can be used to deal even

with highly nonlinear behaviors, such as occupancy map-

ping functions. Here we employ the logistic regression clas-

sifier (Freedman, 2005), owing to its computational speed

and direct extension to online learning. Assuming a train-

ing dataset D = {xi, yi}Ni=1, where xi ∈ R3 is a point in the

3D space and y = {−1,+1} is a binary classification vari-

able that describes the occupancy state of x, the occupancy

probability for a query point x∗ is defined as

p( y∗ = 1|8(x∗) , w)= 1

1+ exp
(

wT8(x∗)
) (1)

and, conversely, the non-occupancy probability for x∗ is

p( y∗ =−1|8(x∗) , w)= 1 − p( y∗ = 1|8(x∗) , w). The

vector w represents the weight parameters that describe

the discriminative model p( y|x, w). To estimate the optimal

weight parameters x̄ we minimize the regularized negative

log-likelihood (RNLL) function:

RNLL(w)=
N

∑

i=1

(

1+ exp
(

−yiw
T8(xi)

))

+ R(w) (2)

where R(w) is a regularization function, used to prevent

overfitting and promote sparseness in w. A particularly use-

ful property of Equation (2) is its suitability for stochas-

tic gradient descent (SGD) optimization (Bottou, 2010), in

which each training point is considered individually (or in

mini-batches) and contributes with one small step towards

a local minimum, given by

wt = wt−1 − ηt

δ

δw
RNNL(w) (3)

where η > 0 is the learning rate, usually a constant or

asymptotically decaying with the number of iterations. For

a more complete overview of different SGD techniques and

how they affect convergence speed and accuracy, we refer

the reader to Ruder (2016). Note that this technique is natu-

rally suited to online learning, since new information can be

incorporated into the current model by incrementally per-

forming the stochastic update step given by Equation (3).

It also eliminates the need to store all training information

simultaneously, which might be unfeasible in large-scale

datasets, and instead requires only mini-batches that can be

discarded after processing.

2.1. Feature selection

The key insight in the Hilbert maps framework is that its

discriminative model is not applied directly to the inputs

x, but rather on a high-dimensional vector 8(.) calculated

directly from x. These feature vectors approximate a Hilbert

space by their dot product, such that 8(xi) 8(xj)≈ k(xi, xj).
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Different kernels have various properties (i.e. smooth-

ness/sharpness, stationarity/non-stationarity) that are better

suited to certain applications, and the choice of which one

should be used is crucial in the development of kernel-

based methods. Arguably the most common kernel used in

machine learning tasks is the radial basis function (RBF),

that can be defined as

k(xi, xj)= exp

(

− 1

2σ 2
( xi − xj)

T ( xi − xj)

)

(4)

In Ramos and Ott (2015) three different feature vectors

that approximate the RBF kernel are described. The first

is based on random Fourier features (Rahimi and Recht,

2008), that can be approximate arbitrary kernels and has

the generic form

8(x)= 1√
M

[

e−is1·x,...,−isM ·x
]

(5)

where M is the dimensionality of 8( .) and s are samples

obtained from the spectral density S( s) of k. For the par-

ticular case of the RBF kernel, we have eis·x = cos( s ·
x)−i sin( s · x)= cos( s · x+ b), where S( s)∼ N ( 0, 2σ−2I)

and b ∼ [−π ,+π ] is introduced to rotate the projection

about the real axis by a random amount (the imaginary axis

must be zero for real kernels). The random Fourier feature

vector can then be defined as

8RF(x)= 1√
M

[cos( s1x+ b1) , . . . , cos( sM x+ bM ) ]T

(6)

The second is based on the Nyström approximation

(Williams and Seeger, 2000), in which a kernel matrix

KNN =
[

k(xi, xj)
]

N×N
is approximated by projecting it

into a set of M inducing points, denoted as {x̂1, . . . , x̂M }.
Then, we can write KNN ≈ KNM K̂

†
MM KT

NM , where KNM =
[

k(xi, x̂j)
]

N×M
is a kernel matrix between training and

inducing points, K̂MM =
[

k( x̂i, x̂j)
]

M×M
is a kernel matrix

between inducing points and K† is the pseudo-inverse of K.

This approximation can be factorized and put into a feature

vector of the form

8NS(x)= D̂−1/2V̂ T( k(x, x̂1) , . . . , k(x, x̂M ) )T (7)

where D̂ = diag( λ1, . . . , λr) are the first r non-negative

eigenvalues of K̂MM in ascending order and V̂ =( v, . . . , vr)

are the corresponding eigenvectors. Note that, while the

random Fourier approximation is dataset independent (i.e.

it can be precomputed solely based on the choice of ker-

nel), the Nyström approximation depends on the particular

training dataset being used for each application.

Third, a sparse approximation is proposed, aiming to pro-

duce a set of features that can more easily and efficiently

be optimized using SGD. It is based on the sparse kernel

introduced in Melkumyan and Ramos (2009), that vanishes

to exactly zero when r =
√

(xi − xj)T 6−1(xi − xj) ≥ 1,

where 6 is a 3× 3 symmetric positive-definite length-scale

matrix. It also approximates the smoothness of the RBF ker-

nel, being four times differentiable. This sparse kernel has

the form:

kSP(xi, xj)=
{

2+cos(2πr)

3
( 1− r)+ 1

2π
sin( 2πr) if r < 1

0 if r ≥ 1
(8)

The sparse feature vector is defined by simply concate-

nating sparse kernels in each dimensionality:

φSP(x)=











kSP(x, x̂1)

kSP(x, x̂2)
...

kSP(x, x̂M )











(9)

where, similar to the Nyström feature, {x̂1, . . . , x̂M } is a

set of inducing points that represents the center of each

kernel (the authors propose uniform sampling from the

observed point cloud or placement on an equally sized

grid). Note that, during calculations, kernels with r ≥ 1

can be safely ignored, since their value will be exactly zero

in that dimension of the feature vector.

3. Efficient Hilbert maps

Here we introduce and discuss techniques that significantly

improve the performance of the Hilbert maps framework,

both in terms of computational speed and memory require-

ments. The objective is to achieve occupancy mapping

under real-time constraints, in which a model of observed

structures is generated incrementally as new information

about the environment is collected, and can be queried as

necessary for tasks such as path planning, active search, etc.

In the next sections we address several key aspects in

achieving this improvement in performance, namely: local-

ized length-scales, that promote non-stationarity in the

input space as a way to improve modeling results with fewer

RKHS dimensions; automatic kernel selection, in which

different kernels are used to model various areas of the input

space; efficient feature placement, that introduces a novel

way to automatically determine the number and location of

the inducing points that will be used to produce the feature

vector; batch training and inference, which improves upon

the optimization and querying aspects of the classifier used

by the Hilbert maps framework to produce occupancy map-

ping estimates; and incremental reconstruction, an efficient

way to produce the isometric surface that represents transi-

tions between occupied and unoccupied areas of the input

space.

3.1. Localized length-scales

Owing to its sparsity, the kernel introduced in Equation

(8) is the most computationally efficient out of the three
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approximations presented in Ramos and Ott (2015). How-

ever, a few questions still remain: where should the induc-

ing points be placed, and how many are enough for an

accurate representation of the observed structures? Random

sampling might lead to redundant kernels, that describe

very similar portions of the input space, whereas place-

ment on an equally sized grid might produce kernels in

areas where there are no observations, and areas with highly

detailed structures are underrepresented.
Owing to this, Guizilini and Ramos (2016) proposed a

novel methodology to generate inducing points for sparse
kernel placement, in which the input point cloud is clus-
tered and the clusters centers are used as inducing points.
Furthermore, the covariance matrices calculated from the
points belonging to each cluster (i.e. closest to its center)
can be used to generate non-stationarity in the form of auto-
matic relevance determination (ARD) (Wipf and Nagarajan,
2008), where different length-scales are attributed to each
kernel, to better represent the structures in that particular
area of the input space. For the 3D space, the mean µ and
covariance matrix 6 for each cluster Mm = {µ, 6}m, rep-
resented by the subset Nm of the input point cloud, can be
calculated as

µ
m = {x̄m, ȳm, z̄m} = 1

Nm

Nm
∑

i=0

xm
i (10)

6m = 1

Nm − 1

Nm
∑

i=0





( 1xm
i )2 1ym

i 1xm
i 1zm

i 1xm
i

1xm
i 1ym

i ( 1ym
i )2 1zm

i 1ym
i

1xm
i 1zm

i 1ym
i 1zm

i ( 1zm
i )2





(11)

where 1xm
i = xm

i − µ
m. Within this methodology, the

length-scale of each kernel is tied to the variance of its

corresponding cluster, for each input dimension. Larger

variances will produce a slower change in occupancy state

for that specific dimension, and vice versa, which in turn

promotes a better representation of structures for that par-

ticular area of the input space. The localized length-scale

feature vector is obtained by concatenating sparse ker-

nels calculated based on the statistical information of each

cluster:

8LLS(x,M)=











kSP(x,M1)

kSP(x,M2)
...

kSP(x,MM )











(12)

where kSP is given by Equation (8), with

weighted Euclidean distance between points

r =
√

(xi − µm)T 6−1
m (xi − µm). The search for points

within this distance threshold can be done efficiently by

maintaining a kd-tree (Muja and Lowe, 2009), and only

the k nearest neighbors are used to generate the feature

vector (the others dimensions are set to zero). Furthermore,

this search for nearest neighbors can be extended to an

anisotropic space using the work proposed in Pereira and

Andreazza (2010), where the covariance matrix of each

cluster is also taken into consideration during distance cal-

culations. It has been shown (Guizilini and Ramos, 2017)

that this search in the anisotropic space is particularly

beneficial in areas with low-density of clusters.

A 2D example of an occupancy map produced by the

Hilbert maps framework is shown in Figure 2, where we

can see the benefits of introducing localized length-scales

to the sparse feature vector formulation. This is due to the

use of a stationary kernel to model non-stationary behavior,

such as the environment produced by the observed point

cloud. Different areas of the input space are shaped differ-

ently (e.g. vertical and horizontal walls, sharp corners, etc.),

and the kernel used to describe these areas should be able

to adapt accordingly.

In addition, by introducing more descriptive kernels we

can achieve similar reconstruction results with fewer clus-

ters, and by extension fewer RKHS dimensions. Decreas-

ing the number of RKHS dimensions translates into fewer

kernel calculations during feature vector generation, thus

improving computational speed, and it also produces a

smaller memory footprint, since the same dataset can be

described using fewer features. Naturally, there is a trade-

off between quality and efficiency when the number of

RKHS dimensions is considered, however by introducing

more descriptive kernels we can improve efficiency without

compromising quality.

3.2. Automatic kernel selection

The local length-scale methodology described in the pre-

vious section is able to improve occupancy mapping results

because it provides a more complex kernel, from which fea-

ture vectors that are better equipped to represent observed

structures can be constructed. While the standard SP feature

vector from Equation (9) is only capable of modeling radi-

ally symmetric objects, the local length-scale feature vector

from Equation (12) can “stretch” its spatial dimensions to

simulate different parameters of thickness, that are unique

to each area of the input space. These parameters should be

learned in an unsupervised manner, based on information

extracted directly from the observed point cloud (i.e. from

the statistical information contained in each cluster).

In the work of Guizilini and Ramos (2017) it was shown

that, in fact, entirely different kernels can be used for each

dimension of a sparse feature vector, and that this diversity

further increases the modeling capabilities of the Hilbert

maps framework. As a test case, the planar surface kernel

(PS) was proposed, that is designed to specifically model

structures with one spatial dimension (thickness) much

smaller than all the others, acting as the normal vector.

Since planar surfaces are found in most environments (e.g.

walls, ground, etc.), this new kernel can be readily applied

to nearly every occupancy mapping scenario. It is defined

as

kPS(x,Mm)=
{

1 if dk < λk | k = {1, 2, 3}
0 otherwise

(13)
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Fig. 2. Two-dimensional example of occupancy mapping using the Hilbert maps framework. The training points in (a) are clustered,

and mean and covariance values are extracted from each cluster, as shown in (b). The nearest k neighbors are then selected as inducing

points to generate feature vectors during training and inference. In (c) only one nearest neighbor is used, resulting in sudden transitions

between one cluster and another that explain the jagged lines. In (d) five nearest neighbors are taken into consideration, which produces

a more smooth transition between different areas of the input space. Lastly, (e) shows the effects of removing the use of localized

length-scales during the feature vector generation process. Each cluster is now unable to adapt to the distribution of its surrounding

points, which results in the same stationary shape being repeated for the entire input space.

where d = Um( x − µ
m), with Um = {u1, u2, u3} being the

eigenvectors of 6m, and λk are the corresponding eigenval-

ues for Um. This transformation is necessary to align the

distance vector in relation to the eigenvectors, so they can

be properly compared with the eigenvalues. Essentially, the

PS kernel defines as occupied the areas within its aligned

eigenvectors, scaled by their corresponding eigenvalues. To

better deal with uncertainty boundaries, these eigenvalues

can be scaled such that λ′k = 2
√

λk , so the transition

between occupied and unoccupied states takes place within

two standard deviations.

Furthermore, due to the repetitive nature of planar sur-

faces, it is possible that multiple clusters are used to repre-

sent the same structure (see Figure 3(b)). Owing to this, to

decrease the feature vector dimensions necessary to prop-

erly describe the surrounding environment, a second clus-

tering step is proposed, that acts on the clusters themselves.

It is performed using a distance-based search method with

one threshold for the maximum spatial separation 1d on the

localized length-scale space and another for the maximum

angular deviation 1θ between normal vectors, here repre-

sented as the eigenvectors u′ corresponding to the small-

est eigenvalue of each cluster. These two calculations are

performed as follows:

dd(Mi,Mj) =
√

( µi − µj) 6−1( µi − µj)T (14)

dθ (Mi,Mj) = cos−1( u′i · u′j) (15)

where 6 = (
√

6i +
√

6j)
2 is the weighted length-scale

between two clusters. This metric was selected due to its

natural way of providing a separation threshold, that is inde-

pendent on the covariance values themselves. A value of

2, for example, indicates that the 95% certainty boundaries

(two standard deviations) are in close proximity. Because

it is faster to compute, the angular deviation is used as an

initial filter, and the spatial separation on the length-scale

space is calculated only if necessary (the square root of

covariance matrices can be precomputed for efficiency).

When two clusters are close enough given these two

thresholds, their points are merged together to produce a

new cluster, with mean and covariance values calculated

based on this new subset of N i + N j points . The same pro-

cess is repeated iteratively, until there are no more changes

in the number of clusters. The effectiveness of this second

clustering step can be seen in Figures 3(b)–(d), where the
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Fig. 3. Two-dimensional example of orientation clustering. Pink dots represent cluster centers, red ellipses indicate covariance matrices

within two standard deviations, and blue lines depict normal vectors.

100 original clusters were reduced to only 11 without com-

promising occupancy mapping results (Figure 3(f)). Note

that clusters not classified as planar surfaces can still be

modeled using the local length-scale kernel, which pro-

duces a more semantically meaningful representation of

observed structures, since now they can be categorized with

different labels.

3.3. Efficient feature placement

Whereas the original work of Ramos and Ott (2015) uses

a grid-like structure to place inducing points on the input

space, to generate the sparse feature vector, in Guizilini and

Ramos (2016) it was proposed the use of clustering tech-

niques. The main benefit of this approach is that it does

not produce inducing points in empty areas, thus decreas-

ing the resulting feature vector size. In addition, it can deal

with varying density in observations and different levels of

detail, by placing more kernels where necessary to produce

a more accurate representation of occupancy states.

Despite its simplicity, the k-means algorithm (Lloyd,

1982) still remains the most widely used technique for

unsupervised clustering. It takes as input the dataset X to

be clustered, and the initial k cluster positions C (originally

obtained by randomly sampling from X ), and returns as

output the optimized cluster positions C ′ that minimize the

potential function (Equation (16)). This is done iteratively,

by alternating between an assignment step, in which each

data point is assigned to its closest cluster center; and an

update step, in which the cluster centers are updated based

on this new set of assigned data points,

φ =
∑

x∈X

min
c∈C
‖x− c‖2 (16)

Since its introduction, several extensions have been pro-

posed to circumvent some of the limitations present in the

original algorithm, such as: (1) initial cluster positioning;

(2) scalability to larger datasets; and (3) the number k of

clusters. The k-means++, for example, was introduced in

Arthur and Vassilvitskii (2007) as a way to select initial

cluster centers for further optimization, thus avoiding local

minima. The mini-batch k-means (Sculley, 2010) addresses

the scalability issue by subdividing the data points into sub-

sets and performing optimization using stochastic gradient

descent, while the k-means‖ (Kucukyilmaz, 2014) explores

parallelism to improve efficiency. The optimal number of

clusters can be automatically determined using multiple-

hypotheses techniques, such as those introduced in Pelleg

and Moore (2000) and Hamerly and Elkan (2004). Recently,

the k-MC2 approximate clustering technique was proposed

(Bachem et al., 2016), that completely eliminates depen-

dency in the number of data points and instead has a com-

putational complexity of k2d, where d is the dimensionality

of the input space.

Here we build upon these algorithms and propose a

novel technique for clustering initialization that addresses
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Algorithm 1 Quick-Means initialization algorithm

Require: point cloud X with N points

radial inner ri and outer ro thresholds

minimum number of points per cluster k

distance function d( ., .)

Ensure: clusters C

1: t = N % Number of available points

2: vi = {0, 1, 2, . . . , N} % Aux. index vector

3: vj = {0, 1, 2, . . . , N} % Aux. index vector

4: vb = 0N % Aux. boolean vector of size N

5: C ← {} % Empty cluster set

6: while t > 0 do

7: x∗ ← X [vi[randint( 0, t) ]] % Sample available point

8: M← x : d(x∗, x) < ro , ∀x ∈ X [vi[0, 1, . . . , t]]

9: if |M| ≥ k then % If there are enough points

10: C ←M % Add new cluster to set

11: end if

12: for m ∈M do % Remove points from available set

13: i← index of m in X % Get point index

14: % If available and close enough

15: if vb[i] == 0 and d( m, x∗) < ri then

16: vb[i] = 1 % Remove from availability pool

17: j← vj[i] % Store aux. index j of i

18: vi[j] = vi[--t] % Switch aux. index i

19: vj[t] = vj[vi[j]] = j % Replace aux. index j

20: end if

21: end for

22: end while

all the above mentioned limitations, called quick-means.

The key insight is that, for the particular case of produc-

ing inducing points for feature vector generation, we are not

concerned with optimal cluster placement, but rather with

regularly spaced clusters. If two clusters are too far apart,

the observed structures might become too complex for each

kernel to correctly model, and if they are too close it might

create unnecessary computational costs (in addition, each

cluster might not have enough information to produce a sta-

tistically meaningful kernel). The quick-means algorithms

exploits this trade-off in distance between clusters to auto-

matically select the optimal k for any given dataset, while

scaling to very large datasets because it does not require

explicit distance calculations between points and cluster

centers produce a probability distribution for sampling.

Pseudo-code for the proposed clustering initialization

technique can be found in Algorithm 1. It receives as input

the point cloud X to be clustered, two distance threshold

radii ri and ro, a threshold cluster size k and a distance

function between any two points in the input space d( ., .).

The use of two threshold radii, inner and outer, is important

to allow overlapping between clusters, as a way to increase

feature complexity and model structures from different per-

spectives. In lines 2–4 three auxiliary vectors are produced:

vi, to store the indexes of available points; vj, to store the

cluster number for each point; and vb, to determine which

points should be searched for new cluster centers.

Algorithm 2 Batch Feature Training algorithm

Require: Hilbert Map H to be updated

point cloud X and occupancy states y

Ensure: updated Hilbert Map H

1: C ← quick_means( X , ri, ro, k, d( ., .) )

2: add = {} % Indices to add

3: merge = {} % Indices to merge

4: for Ci ∈ C do

5: for Mj ∈M do

6: µij = µ
C
i − µ

M
j % Calculate relative mean

7: 6ij =(

√

6C
i +

√

6M
j )2 % Calculate relative variance

8: if

√

µij6
−1
ij µ

T
ij < 1.0 then % If close enough

9: merge←( i, j) % New cluster to merge

10: else

11: add← i % New cluster to add

12: end if

13: end for

14: end for

15: for i ∈ add do % Add new cluster

16: M← {Ci, 0}
17: end for

18: for ( i, j)∈ merge do % Merge two clusters

19: µj ←( µ
C
i + µ

M
j ) /2

20: 6j ←( 6C
i +6M

j ) /2

21: end for

22: for Ci ∈ C do % Update weights

23: k← nearest_neighbors( Ci,M)

24: for (x, y)∈ Ci do

25: 8LSS(x)= {kSP(x,Mk) }k∈k % New feature vector

26: w -= η ∂
∂w

RNLL(w, 8LSS(x) , y) % Stochastic step

27: end for

28: end for

Afterwards, starting from an empty cluster set C, we iter-

ate while there are still available points to be considered.

Initially, a random sample x∗ is obtained from the list of

available points (line 7), and a new cluster M is produced

from its neighbors within ro. If this new cluster has at least

k points, it is incorporated into C (lines 9 and 10). Then,

the distance from each point in M to x∗ is calculated, and

if it is smaller than ri this point can no longer be consid-

ered either as a seed or part of a new cluster. This can be

efficiently done by updating the indexes stored in vi (line

16), so sampling is still performed by randomly selecting

an integer from 0 to the current number of available points

t. When t = 0, the algorithm ends and returns the full clus-

ter set C, that can then be further optimized by the standard

k-means algorithm.

Figure 4 shows comparisons between the proposed

quick-means algorithm and other state-of-the-art clustering

initialization techniques, both in terms of (a) computational

speed during the initialization process and (b) potential

function during k-means optimization, for each iteration.

As we can see, quick-means is able to calculate initial clus-

ters orders of magnitude faster than other techniques, with-

out significantly compromising accuracy. In fact, empirical
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Fig. 4. Comparison between different clustering initialization techniques: random, k-means++, k-means‖, ASK-Means (Guizilini and

Ramos, 2017), and the proposed quick-means algorithm (average of 50 runs with different random seeds).

Table 1. Average processing times over 10 runs (milliseconds) for

the LLS-HM framework, on the Virtual dataset.

Task Total time Individual time

Clustering 471± 8 5.23× 10−3 / point

Calc. length-scale 23± 4 9.21× 10−3 / cluster

Calc. train features 116± 12 1.29× 10−3 / feature

SGD training 5± 1 5.56× 10−5 / feature

Calc. grid features 873± 121 1.37× 10−3 / feature

Grid inference 17± 4 2.66× 10−5 / feature

evidence shows that, for occupancy mapping applications

within the proposed Hilbert maps framework, the output of

quick-means can be used directly without noticeable degra-

dation in results, which further improves the algorithm’s

applicability to real-time tasks.

3.4. Hierarchical batch feature calculation

As shown in Guizilini and Ramos (2016), and further

explored in the experiments conducted in Section 4 (see

Table 1), the feature calculation process also consumes a

significant portion of the total computational time, in addi-

tion to the clustering process addressed previously. This is

due to the necessity of obtaining the k nearest neighbors of

each input point, to determine which inducing points (and,

by extension, which dimensions) are relevant when produc-

ing the corresponding feature vector. Although this process

can be sped up significantly by using efficient data struc-

tures such as kd-trees (Muja and Lowe, 2009), in relation

to the naive approach of calculating kernels for all dimen-

sions, the sheer number of new training and querying points

produced at each iteration, combined with the introduction

of search in the anisotropic space (Pereira and Andreazza,

2010), still pose a challenge for real-time applications of the

Hilbert maps framework.

Owing to this, here we propose a novel methodology that

uses batches of input training and query data, rather than

individual points, and performs nearest neighbors calcu-

lations directly on these batches. In addition, we employ

a hierarchical clustering (HC) process that is scalable to

large-scale datasets and naturally allows the incorporation

of new information, by merging overlapping clusters and

creating new ones if necessary. The basis for this novel

methodology is the natural assumption that points belong-

ing to the same cluster will have similar nearest neigh-

bors, and therefore can share this information without the

need for redundant calculations. In addition, by increas-

ing the number of nearest neighbors used to produce the

local length-scale feature vector (see Equation (12)) we

can further minimize the impact of individual variations

between each point in a cluster. This new feature calcula-

tion process can then either be applied during training, to

efficiently optimize the parameters of the internal classifier

using stochastic gradient descent on batches of available

data, rather than individual points, or during inference, to

quickly produce occupancy estimates for unobserved areas

of the input space.

Pseudo-code for the proposed batch feature calculation

technique, applied for the training step, can be found in

Algorithm 2. It receives as input a Hilbert map H to be

updated and a point cloud X with respective occupancy

states y. Initially, this point cloud is clustered using the

quick-means technique (see Algorithm 1) to produce the set

C = {µ, 6}Ni=1 (line 1). These clusters are then compared

in proximity with the current set M = {µ, 6}Mi=1 from H,

using the anisotropic distance metric introduced in Equa-

tion (14). Here we use a threshold of one standard deviation

in said anisotropic space to determine whether a cluster has

been re-observed, as shown in line 8.

If there are no clusters within this vicinity, Ci is added to

M (line 16), with an initial weight parameter of 0 for the

logistic regression classifier, indicating no prior knowledge

of its occupancy state. Otherwise, the statistical informa-

tion of Ci is merged to its nearest neighbor (lines 19 and

20), producing an updated cluster. Figure 5 depicts this pro-

cess of cluster addition and merging, as new point clouds
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Fig. 5. Two-dimensional example of point cloud incorporation into the occupancy mapping model. In each row, we start with the current

clustered point cloud (blue), and introduce a second clustered point cloud (red), that represents new information to be incorporated.

Overlapping clusters are merged (green) to produce a better representation of boundaries between point clouds, and other ones are

maintained and used during the feature generation process.

are collected. Note that this merging process reinforces

the current state of the observed cluster, producing better-

defined occupancy estimates, since new information is used

to update its weight parameter.

Finally, the feature vector is calculated for each point

in X (line 25), using batches of nearest neighbors calcu-

lated for each cluster (line 23). Each feature vector 8LSS(x),

alongside its corresponding occupancy state y, is then used

to update the weight parameters of the logistic regression

classifier via stochastic gradient descent (line 26), so the

trained model better reflects the observed structures in the

surrounding environment. A similar process can be applied

to the inference step, by clustering the query points and cal-

culating each feature vector according to its cluster’s nearest

neighbors, before estimating the occupancy state according

to Equation (1). Pseudo-code for the proposed batch feature

calculation technique, applied to the inference step, can be

found in Algorithm 3. In essence, it replicates lines 1 (clus-

tering) and 22–28 of Algorithm 2 (nearest neighbor search

and feature vector calculation), but instead of optimizing

the weight parameters based on Equation (3) it estimates

occupancy states based on Equation (1).

However, as the explored environment grows, so does

the number of clusters necessary to accurately represent

observed structures, which in turn increases the computa-

tional cost of nearest neighbors search. The use of kd-trees

and the proposed batch feature calculation technique sig-

nificantly decreases the computational time required for

Algorithm 3 Batch Feature Inference algorithm

Require: Hilbert Map H and inference points X

Ensure: occupancy probability vector p

1: C ← quick_means( X , ri, ro, k, d( ., .) )

2: for Ci ∈ C do % For each cluster

3: k← nearest_neighbors( Ci,M)

4: for (x, y)∈ Ci do % For each point

5: 8LSS(x)= {kSP(x,Mk) }k∈k % Feature vector

6: p(x)← 1

1+ exp( wT8LSS(x) )
% Occupancy state

7: end for

8: end for

this step, but this is still an unbounded increase that will

eventually hinder real-time applications of the Hilbert maps

framework. One way to address this issue is by employ-

ing local cluster maps, that can be queried independently

from each other, and therefore have a computational cost

that does not increase as more clusters are globally added.

This technique is known as HC (Rajalingam and Ran-

jini, 2011), and can be broadly divided into two categories:

agglomerative, where each observation starts in its own

cluster and is merged as it moves up the hierarchy; and

divisive, where all observations start in one cluster and are

split as they move down the hierarchy. In the general case,

agglomerative clustering has complexity O( n2 log( n) ) and

divisive clustering with exhaustive search has complexity
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Fig. 6. Diagram of the proposed multi-layered hierarchy clustering technique.

O( 2n), that can be brought down to O( n2) for certain spe-

cial cases, such as the single and complete linkage (Defays,

1977).

For the particular application of occupancy mapping

from an incremental introduction of point clouds, there are

structural patterns that can be used to significantly decrease

this computational complexity. For example, we can assume

a hierarchy on the point clouds themselves, in which each

one contributes to a single cluster, that is then subdivided to

produce the local clusters used to generate feature vectors.

This approach is particularly attractive if each point cloud is

spatially bounded, i.e. it has a limited range, such as a laser

scanner. Other sensors, such as cameras, are unbounded,

meaning that they can produce distance estimates at any

range depending on how structures in the environment are

observed. To address these situations, here we propose a

multi-layered hybrid approach, composed of two stages:

1. divisive, in which a point clouds starts as one single

structure that is subdivided into multiple local clusters

(see Section 3.3);

2. agglomerative, in which local clusters are merged to

produce super-clusters (here referred to as anchors),

representing different areas of the input space.

A diagram of the proposed multi-layered hierarchy clus-

tering technique can be found in Figure 6. It takes as input a

new point cloud, that is clustered and incorporated into the

current Hilbert maps model according to the batch feature

training methodology introduced in Algorithm 2. After-

wards, clusters added to the current model are further clus-

tered to produce a set of new anchors (using larger inner ri

and outer ro radii thresholds). This set is also incorporated

into the Hilbert maps framework, to produce a second layer

of inducing points that can be used to produce feature vec-

tors, albeit in a lower cluster resolution due to the difference

in quick-means parameters.

This process can be repeated as many times as nec-

essary, introducing new layers composed of increasingly

fewer clusters that represent larger portions of the environ-

ment. The top layer can either be directly used to estimate

occupancy states, at a lower cluster resolution, or iteratively

searched down for nearest neighbors in previous layers,

which are then used to produce occupancy estimates. In

each layer, the k nearest neighbors are calculated amongst

their anchors, and then for each one the k nearest neighbors

are calculated amongst its anchors, and so forth. Although

this iterative search creates extra computational cost, exper-

imental tests show that, for datasets that span a sufficiently

large volumetric space, it can lead to significant gains in

performance.

3.5. Incremental grid reconstruction

As is the case with most generalized interpolative mod-

els in statistics, by performing calculations in the RKHS,

based on feature vectors that approximate kernel functions,

the Hilbert Maps framework is capable of producing occu-

pancy estimates for any point in the input space, at arbitrary

resolutions. This is particularly useful because it does not

require the generation of a grid to store occupancy esti-

mates, which can be prohibitive for very large datasets that

cover a significant volumetric space, especially at finer res-

olutions. However, in some situations an occupancy grid

is necessary, such as scene reconstruction using polygonal

meshes obtained from a discrete scalar field (Lorensen and

Cline, 1987). This is an intuitive way of presenting results

from an occupancy model, that is both understandable by

humans and easily exploited by computers, for tasks such

as path planning and obstacle avoidance.

Owing to this, here we propose a novel technique for the

incremental generation of occupancy grids that significantly

outperforms the naive approach of individually estimating

the occupancy state of each point in the grid, even when

using the batch feature inference methodology described

previously (Algorithm 3). We assume a fixed-resolution

equally sized grid, and maintain local grids representing the
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Fig. 7. Two-dimensional example of the proposed incremental grid reconstruction technique. In the top row all clusters are taken into

consideration (a), each one producing its own local grid that is combined to produce the global grid (b), and in (c) the resulting discrete

mesh surface is depicted. In the bottom row, only a few clusters are considered (d), so the contribution of each local grid can be better

viewed (e), and the resulting sparse reconstruction can be found in (f).

contribution of each cluster to the calculation of occupancy

estimates in different portions of the input space. These

local grids are updated every time a corresponding weight

parameter is modified during the training process, result-

ing in an incremental technique that is always up to date

with the current Hilbert maps model, and can be efficiently

combined to produce a global grid representation.

We define the dimension of each local grid according to

the eigenvalues λd of its corresponding cluster, projected

to the global coordinate system in terms of both transla-

tion and orientation. Similarly to Section 3.2 these eigen-

values are scaled so that λ′d = 3
√

λd , so that distances

of up to 3 standard deviations are still considered relevant

for calculations. A local grid Gm stores kernel evaluations

kSP(xg,Mm) for that particular inducing point, in relation

to each of its spatial coordinates xg ∈ Gm. The occupancy

state of a spatial coordinate on the global grid is obtained

by first combining these kernel evaluations to produce the

feature vector 8(xg) and then evaluate Equation (1). An

example of the proposed technique for a 2D dataset can be

found in Figure 7, first for a complete reconstruction of the

observed environment (top row) and afterwards for a par-

tial reconstruction, where only some local grids are used

(bottom row), for a better understanding of the underlying

process.

Combining kernel evaluations can be done efficiently by

maintaining indexes for each local grid, so they can be

quickly positioned within the global grid. Assuming start-

ing coordinates of ( 0, 0) for the global grid, in the 2D space,

and starting coordinates of ( i, j) for any given local grid,

the coordinates ( u, v) for a point in the local grid will be

( u + i, v + j) in the global grid (note that local grids are

already constructed in alignment with global coordinates,

so their points overlap spatially). A quick inspection of

Equation (1) shows that, for the logistic regression classi-

fier, the row-weight vector w is multiplied by the column-

feature vector 8( .) to produce a single scalar s = wT8(x).

This scalar can be iteratively calculated by multiplying

each kernel evaluation with its corresponding cluster weight

parameter as they are added to the global grid:

sg =
∑

m

wm · k(xg,Mm) (17)

If a local grid does not include a certain point in the

global grid, the kernel evaluation is implicitly assumed to be

zero and does not contribute to the estimation of that par-

ticular occupancy state. Therefore, this process eliminates

the need of nearest neighbors search, with the dimensions

of each local grid now dictating which kernels should be

taken into consideration when producing feature vectors.

Once the values of sg are obtained for all points of the global

grid, the corresponding occupancy state estimates can be
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directly calculated by applying the logistic function:

p( yg = 1|8(xg) , w)= 1

1+ exp( sg)
(18)

Furthermore, within this incremental methodology each

dimension of a feature vector can be updated independently,

as the corresponding cluster parameters (i.e. weight values

and length-scales) are modified with the addition of new

information. The introduction of new clusters can also be

done efficiently by producing a corresponding local grid,

that contains all coordinates in which that new cluster is

relevant for the production of feature vectors. Different grid

resolutions can be maintained in parallel, sharing the same

Hilbert maps model, and queried independently to produce

varying levels of details according to the application at

hand.

4. Experimental results

In this section we perform extensive experimental tests

with the proposed EHM framework, to validate its accuracy

and performance under different circumstances in com-

parison with other state-of-the-art 3D occupancy mapping

techniques. Three different datasets were considered, one

representing a small-scale simulated indoors environment,

another composed of a single 3D laser scan of an outdoors

environment, and a third large-scale dataset composed of

a series of 3D laser scans obtained in different overlap-

ping areas of an urban environment. Note that each model

is generated from scratch by incrementally incorporating

new pointclouds as they become available, there is no prior

training using other observed scenes. Unless noted other-

wise (i.e. for tests with varying sparsity levels), all available

points are used in the optimization process, to update the

current model’s parameters and ensure a better occupancy

classification performance.

The first dataset, entitled Virtual, is composed of around

90,000 points (Figure 8(a)) and was obtained in a simulated

environment of an empty room. Although this is a simple

dataset from a modeling perspective, it serves to validate the

proposed algorithm in comparison with the various imple-

mentations of the Hilbert maps framework found in current

literature, and depicts some of the limitations present in

other occupancy mapping techniques. In particular, results

obtained using OctoMaps (Hornung et al., 2013) in this

dataset can be found in Figure 8(c), where we see the var-

ious occupied voxels colored by height. In Figure 8(b) the

original point cloud was clustered with an average cluster

distance of 0.05 m to produce around 2,000 clusters, that

were used in three different versions of the Hilbert maps

framework to produce an occupancy map of the observed

environment.

In Figure 8(d) the original Hilbert maps framework found

in Ramos and Ott (2015) was used, in which sparse kernels

are used with a single length-scale, determined by the aver-

age cluster distance. It is clear that, within this resolution,

Table 2. Average processing times over 10 runs (milliseconds) for

the EHM framework, on the Virtual dataset.

Task Total time Individual time

Clustering 37± 4 4.11× 10−4 / point

Calc. length-scale 22± 3 8.79× 10−3 / cluster

Calc. train features 17± 4 1.89× 10−4 / feature

SGD training 3± 1 3.33× 10−5 / feature

Calc. grid features 113± 19 1.76× 10−4 / feature

Grid inference 7± 2 1.12× 10−5 / feature

Table 3. Average processing times over 10 runs (milliseconds)

for different methods of 3D occupancy mapping, on the Virtual

dataset.

Method Training time Query time

GPOM 7127± 529 73,638± 4,154

OctoMap 107± 22 22± 5

HM 3,722± 237 23,714± 3,424

LLS-HM 615± 41 890± 55

EHM 79± 9 120± 16

such sparse kernel is incapable of correctly modeling the

environment, since it is limited to a single shape and can-

not adapt to different structures. In particular, it is unable

to extrapolate the information found in observed areas to

unknown portions of the input space. In Figure 8(e) the

LLS-HM framework found in Guizilini and Ramos (2016)

is used, in which each cluster contain its own length-scale

value, calculated based on the statistical information its own

subset of points. We see that this framework produces a

much smoother occupancy map, in which random gaps in

the observed point cloud are correctly labeled as occupied

in the resulting continuous mapping function.

Finally, Figure 8(f) depicts the results of the proposed

EHM framework in the Virtual dataset, where we can qual-

itatively see that they are virtually identical to the LLS-HM

results. This is to be expected, since the proposed frame-

work does not improve upon the accuracy of LLS-HM, but

rather on its processing speed and computational efficiency,

as shown in Tables 1 and 2. They break down the computa-

tional time of different tasks performed by the Hilbert Maps

framework, the first one for the LLS-HM implementation

and the second one for the proposed EHM implementation.

These numbers show that the extensions introduced in this

paper indeed promote a substantial increase in performance,

particularly for the following tasks: clustering (Section 3.3),

of around 92%; feature calculation (Section 3.4), of around

86% and grid inference (Section 3.5), of around 58%.

Given these results, we calculate that the average process-

ing time for a point cloud of size∼ 90,000 is 37+22+17+
3 = 79 ms, which allows operation at around 12 Hz. Infer-

ence on the current model would increase this processing

time, however the number of queries per iteration in real

applications is usually much smaller and does not require
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Fig. 8. Three-dimensional occupancy mapping results on the virtual dataset using different techniques (colored by height).

Fig. 9. Occupancy mapping classification results for different techniques, with varying sparsity levels.

the reconstruction of the entire observed environment, only

of small portions that are relevant for tasks such as obsta-

cle avoidance and trajectory following.1 Average processing

times for different 3D occupancy mapping techniques can

be found in Table 3, including OctoMaps and GPOMs (as

introduced in Callaghan and Ramos (2012)). As we can see,

the GP framework already struggles to process this small-

scale dataset in a timely manner, which is reflected in its

slow training and query times.

The original Hilbert maps framework, that places induc-

ing points in an equally spaced grid covering the entire

observed environment, has the second slowest training and

query times, due mostly to the sparse feature calculation

process, that requires kernel calculations for each induc-

ing point. The introduction of automatic kernel placement

in the LLS-HM framework, and efficient search for nearest

neighbors using kd-trees, produces a significant increase in

computational speed, that is further enhanced in the EHM

framework proposed in this paper. In fact, the EHM frame-

work rivals OctoMaps in terms of training speed and is on

average faster, by a margin of around 24%.

In addition, EHM produces an occupancy model that is

much more robust to the presence of sparse data, here simu-

lated by randomly removing a percentage of points from the

original point cloud and using only the remaining ones to

produce the occupancy model. The removed points served

to validate the final trained model, and results for differ-

ent occupancy mapping techniques are depicted in Figure

9, both in terms of the percentage of correctly classified

points (with a threshold of 0.5) and F1-measure scores. As

expected, the LLS-HM and EHM frameworks have very

similar results, and the original HM framework degrades

quickly as sparsity increases, since the sparse kernel with-

out localized length-scales is not able to model different

shapes in thee environment (see Figure 8(d)). At higher

sparsity levels GPOM is able to produce better results than
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Fig. 10. Effects of increasing sparsity in occupancy mapping

results, for OctoMaps and EHM. From top to bottom, sparsity has

been respectively set to 80%, 60%, and 40%.

Hilbert maps, and OctoMaps remains consistently in last

place, with a roughly linear decrease as sparsity increases.

Figure 10 provides a visual comparison of the effects of an

increasingly sparse training dataset in the final occupancy

mapping results, for the OctoMaps and EHM frameworks.

The second dataset considered in this paper, entitled

LiDAR, is composed of roughly 550,000 points covering an

area of 50 × 50 × 15 m3, obtained using a RIEGL LiDAR

laser sensor. This sensor was used to produce a snapshot

of an outdoors environment, including the 3D position of

nearby structures and corresponding returned intensity val-

ues. Occupancy mapping results obtained from this dataset,

based on OctoMaps and EHM, are depicted in Figure 11,

including an overview of the scene and different zoomed-

in areas. Interestingly, the point cloud becomes sparser as

it moves away from the center, due to a decrease in sensor

resolution, which is apparent in the OctoMaps occupancy

model. The EHM framework, on the other hand, is able

to smooth out this information and correctly estimate the

occupancy state of sparser areas, thus producing a more

consistent representation of the observed environment.

For an average cluster distance of 0.05 m, roughly 12,000

clusters were produced to model the LiDAR dataset point

cloud, and the reconstruction grid contained around 344

million points. The corresponding training and query times

for both frameworks are presented in Table 4, alongside F1-

measure values (Rijsbergen, 1979) for different levels of

sparsity.2. From this table we see that, for a point cloud of

Table 4. Average processing times over 10 runs (milliseconds)

and F1-measure values for different percentages of training points,

for the LiDAR dataset using the OctoMaps and EHM frameworks.

OctoMaps EHM

Training time 345± 18 526± 48

Query time 279± 23 4,121± 508

F1-measure (80%) 0.783 0.933± 0.026

F1-measure (60%) 0.716 0.872± 0.017

F1-measure (40%) 0.654 0.793± 0.032

Table 5. Average processing times over 10 runs (milliseconds)

and F1-measure values for different percentages of training points,

for the Freiburg dataset using the single-batch (SB) and incremen-

tal (INC) EHM frameworks.

SB-EHM INC-EHM

Training time 3,452± 104 2,822± 91

Query time 7,228± 201 7,839± 274

F1-measure (80%) 0.913± 0.025 0.921± 0.018

F1-measure (60%) 0.859± 0.019 0.848± 0.027

F1-measure (40%) 0.742± 0.013 0.753± 0.008

size ∼ 550,000, OctoMaps outperforms EHM in terms of

training and querying times, however the proposed frame-

work still achieves higher F1-measure values for all sparsity

levels considered. Note that these F1-measure values do

not take into consideration the naturally sparse areas of the

input point cloud, which we can visually see in Figure 11

that the EHM framework is able to consistently reconstruct

the original shape of partially observed objects.

Finally, the third dataset considered is the Freiburg

dataset, freely available to download at http://ais.infor

matik.uni-freiburg.de/projects/datasets/ fr360/. It is com-

posed of 77 scans obtained using a SICK LMS laser range

scanner mounted on a pan–tilt unit. Roughly 25 s were nec-

essary to capture each point cloud, with an average distance

of about 10 m between scans and 150,000–200,000 points

per scan. Figure 12 depicts the incremental occupancy maps

produced using the EHM framework for the first 30 scans,

both incrementally (each scan is added sequentially) and in

a single batch (all scans are trained simultaneously).

As expected, the results are visually nearly identical, and

Table 5 provides numerical comparisons that corroborate

this similarity for both approaches. Interestingly, the incre-

mental EHM framework is able to produce the final occu-

pancy model significantly faster (∼ 22%), since it performs

the training steps only in subsets of the full dataset, thus

eliminating the need of processing all available information

simultaneously. On the other hand, inference speed (assum-

ing an average cluster distance of 0.10 m, which produces

around 112,000 clusters in total) is higher for the single-

batch EHM framework, since each kernel only has to be

calculated for the final grid reconstruction, rather than being

continuously updated as more information is incorporated.

Given these average processing times, new scans can be

incorporated into the EHM occupancy model at around 10
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Fig. 11. Three-dimensional occupancy mapping results on the LiDAR dataset, using OctoMaps (left) and EHM (right), colored by

returned laser intensity values.

Hz. Furthermore, empirical tests show that the process-

ing time of incorporating a new scan is roughly constant,

indicating that the extra costs introduced by the use of

hierarchical batch features (Section 3.4) and incremental

grid reconstruction (Section 3.5), as the occupancy model

increases in complexity, are negligible in relation to the core

components of the Hilbert maps framework (i.e. clustering

and feature vector calculation). In fact, the introduction of

a two-layer hierarchy clustering technique (see Figure 6)

produced a speed gain of around 10% for batch feature

calculation times, in relation to a single-layer composed

of extracted clusters from all point clouds. Our hypoth-

esis is that these gains in speed become more apparent

as the observed environment occupies a larger volumetric

space, since clusters from different areas can be separated

more accurately, thus improving search times for nearest

neighbors.

Another attractive property of the proposed framework

is its smaller memory footprint, since new points do not

have to be stored after being used to update the occupancy

model, only the generated cluster set (and even so, only

clusters that are considered new and were not merged with

those already stored). On the three datasets considered here,

the number of generated clusters was on average 0.018%

the total number of input points, which translates into a

decrease of roughly two orders of magnitude. As a trade-

off between quality and performance, using larger average

cluster distance values would produce even fewer clusters,

with an inverse cubic ratio (i.e. doubling the average cluster

distance would decrease the number of clusters by a fac-

tor of eight). In addition, the use of more descriptive and

specialized clusters, that are capable of modeling certain

types of structures more accurately, would further decrease

this value, producing more compact and efficient occupancy

models. Owing to the use of nearest neighbors for feature

vector calculation, decreasing the number of clusters has

a log( n) impact on training and querying computational

times.

5. Conclusion

This paper has introduced a novel technique EHM for the

incremental generation of 3D occupancy maps, based on the

Hilbert maps framework. Several extensions are proposed,

based on known limitations found in previous iterations of

such framework, and the result is an efficient methodology

that rivals current state-of-the-art occupancy mapping tech-

niques in terms of computational speed, while providing
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Fig. 12. Three-dimensional occupancy mapping results on the Freiburg dataset using EHM, as more scans are incorporated into an

initially empty model (colored by height). In the bottom row, (g) depicts the final grid reconstruction results obtained incrementally; (h)

depicts he final grid reconstruction results obtained when all point clouds are trained in a single batch; and (i) is the final point cloud,

for comparison purposes.

results that are more robust in the presence of sparse data

and have significantly better interpolative powers. Exper-

imental tests have been conducted using both virtual and

large-scale real datasets, depicting outdoors unstructured

environments, with results that testify to the claim that the

proposed methodology is a viable alternative to the task

of large-scale 3D scene reconstruction and modeling of

observed structures. Future work will focus on applying

the proposed methodology to different tasks that tradition-

ally require occupancy models, such as grasping, obstacle

avoidance and autonomous navigation in unknown environ-

ments, developing further extensions that are beneficial to

such scenarios. An extension to dynamic environments is

also planned, so the occupancy model can adapt to gradual

changes in the observed structures and use this information

to predict its state in the near future. In addition, the authors

aim to introduce the Hilbert maps framework to regression

problems, by modifying the training and inference method-

ologies, thus allowing the use of EHM in a multitude of

other applications.
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Notes

1. Note that the proposed incremental grid reconstruction tech-

nique can be used to generate estimates for subsets of the full

observed grid, so the performance increase is still applicable.

2. Since EHM is non-deterministic, due to the clustering process,

confidence intervals are also provided for the F1-measure val-

ues. Other occupancy mapping techniques were not consid-

ered because they do not scale to datasets of such size.
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