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Abstract—The vast amount of data robots can capture today
motivates the development of fast and scalable statistical tools to
model the environment the robot operates in. We devise a new
technique for environment representation through continuous
occupancy mapping that improves on the popular occupancy
grip maps in two fundamental aspects: 1) it does not assume an
a priori discretisation of the world into grid cells and therefore
can provide maps at an arbitrary resolution; 2) it captures
statistical relationships between measurements naturally, thus
being more robust to outliers and possessing better generalisation
performance. The technique, named Hilbert maps, is based on
the computation of fast kernel approximations that project the
data in a Hilbert space where a logistic regression classifier is
learnt. We show that this approach allows for efficient stochastic
gradient optimisation where each measurement is only processed
once during learning in an online manner. We present results with
three types of approximations, Random Fourier, Nyström and a
novel sparse projection. We also show how to extend the approach
to accept probability distributions as inputs, i.e. when there is
uncertainty over the position of laser scans due to sensor or
localisation errors. Experiments demonstrate the benefits of the
approach in popular benchmark datasets with several thousand
laser scans.

I. INTRODUCTION

Representing the physical properties of 3D space is central
to robotics, from manipulation and grasping to autonomous
navigation. Amongst the many physical properties character-
ising the environment the likelihood that a particular point is
occupied by a solid object which the robot needs to interact
with is certainly one of the most important. Traditional tech-
niques to create a map of occupancy rely on the discretisation
of an area into regular sized cells to form a fixed grid on which
a sensor model or likelihood function is applied to estimate the
posterior of occupancy given some sensory data, for example,
laser scans or sonars [4, 5]. One of the main limitations of
such techniques is the assumption that each cell in the grid
is independent of each other and the posterior computation
for the entire map is performed separately for each cell. This
assumption disregards important spatial relationships between
cells and leads to maps with a series of “gaps” between cells.
For example, cells with no observations have a 0.5 likelihood
of being occupied even though they are next to cells with
high likelihood of being occupied. The problem becomes more
severe in 3D maps where the number of cells necessary to
represent the environment with the same resolution grows
exponentially as does the number of required observations. In
indoor environments when the area to be mapped is relatively
small and the density of observations is large, occupancy
grids are generally sufficient in providing a representation
that is both fast and compact. However, representing large

3D outdoor regions with sparse observations still remains a
challenge.

In an attempt to resolve some of these issues, the Gaussian
processes occupancy map (GPOM) [11, 10] was proposed. The
idea is to place a Gaussian prior over the space of functions
mapping locations to the occupancy class. The method is
continuous, i.e., it does not require a prior discretisation of the
space and nonparametric; the complexity of the representation
grows with the number of data points. The final Gaussian
process classifier model possesses many of the advantages we
would like to have in a spatial representation as it directly
captures spatial relationships through a parametrised covari-
ance function and produces principled probabilistic posteriors
naturally encoding the uncertainty of the process. The main
drawback is the computational complexity that without ap-
proximations or division of the data into smaller sets scales
cubically with the size of the data.

We propose a simpler and faster approach to continuous
occupancy mapping in this paper. By utilising recent advance-
ments in optimisation [25] and efficient kernel approximations,
we represent the occupancy property of the world with a linear
discriminative model operating on a high-dimension feature
vector that projects observations into a reproducing kernel
Hilbert space (RKHS) [15]. The objective function for training
the model is convex in the parameters and therefore the
global optimum can be found. Furthermore, the model can be
trained and updated using stochastic gradient descent making
the computation theoretically independent of the number of
observations. The key to our approach is to quickly generate
a large number of features whose dot product approximate
the well-known radial basis function kernel (RBF) [15]. The
RBF kernel can be seen as a feature mapping into a infinite
dimensional space that can asymptotically represent the com-
plexity of the physical world. We present three solutions to
approximate the kernel: 1) The first is based on the recently
proposed Random Kitchen Sinks by [13, 14]; The second is
based on the Nyström approximation which is very popular in
kernel machines [22]; 3) Finally we introduce a novel feature
mapping that generates sparse features better capturing local
information. We also show how to generalise these features
to accept probability distributions as inputs which are more
robust to handle localisation errors or sensor noise. As opposed
to GPOM, our method can be updated in linear time and scales
well with large amounts of data.

The technical contributions of the paper are:
1) Hilbert maps; a novel continuous occupancy map tech-

nique scalable to large datasets and updated in linear



time;
2) A novel sparse Hilbert space feature that better preserves

local information and leads to faster stochastic gradient
descent iterations;

3) A generalisation of the method to receive probability
distributions as inputs to accommodate, in a principled
manner, the uncertainty in the position of the measure-
ments.

The paper is organised as follows. We first introduce the
method, the features and the extensions to probabilistic inputs
in Section II. The objective function and optimisation for
online learning through stochastic gradient descent is intro-
duced in Section III. We discuss relationships between Hilbert
maps, GPOMs and recent results in machine learning related to
important aspects of this technique in Section IV. Experiments
on benchmark datasets and comparisons are presented in
Section V, and conclusions with ideas for future work are
in Section VI.

II. HILBERT MAPS

We begin the presentation of the method by first intro-
ducing notation. We assume a robot captures a dataset D =
{xi, yi}Ni=1, where xi ∈ RD is a point in 2D or 3D space and
yi ∈ {−1,+1} is a categorical variable corresponding to the
occupancy property of xi. The dataset is obtained while the
robot moves in the environment with a range sensor such as a
laser scanner. Randomly selected points in the line segment of
a laser beam between the sensor and an object are labelled as
unoccupied. The final point in the beam generating a return is
labelled as occupied. The length of the beam determines the
number of unoccupied points. Due to the amount of beams
in laser scans, one point for every one to two metres of
beam length is typically sufficient. Selecting the position along
the beam at random creates a more uniformly distributed
dataset over the free space compared to fixed distance interval
sampling. We also assume that the dataset is incrementally
built as the robot collects more data as it moves in the
environment.

Given the dataset, our objective is to incrementally learn a
discriminative model p(y|x,w) parametrised by a vector w to
predict the occupancy property for new query points x∗. In this
work we adopt a very simple logistic regression classifier (LR)
that is simple and fast to learn while being directly amenable
to online learning through stochastic gradient descent (SGD).
The probability of nonoccupancy for a point x∗ can be easily
computed as:

p(y∗ = −1|x∗,w) =
1

1 + exp(wTx∗)
, (1)

while p(y∗ = +1|x∗,w) = 1 − p(y∗ = −1|x∗,w) is the
probability of occupancy.

The model can be seen as the sigmoid logit function applied
to a linear projection of the input x. However, how can this
simple linear model be able to represent the complexity of
the physical world? The key to this problem is to apply
the discriminative model not directly to the inputs x but to

a large number of features computed from x, denoted as
Φ̂(x)1. As we shall see next, the dot product of these features
can approximate popular kernels commonly used in kernel
machines for nonlinear classification. These kernels define
a Hilbert space and can represent a nonlinear mapping of
the inputs to a space of potentially infinite dimension (for
example in the case of the RBF kernel [8]) with sufficient
complexity to represent the environment. Note, however, that
the advantage of using the feature approximation to the kernel
rather than the kernel itself is that we can learn the model
using fast primal procedures rather than expensive quadratic
programming approaches as demonstrated in [16] for the case
of support vector machines.

In the next three sections, we show approaches to generate
features Φ̂(·) that efficiently approximate particular kernels;
k(x,x′) ≈ Φ̂(x)T Φ̂(x′).

A. Random Fourier features

This kernel approximation method is based on the work of
Rahimi and Recht [13] with approximation bounds presented
in [14] for general learning problems. Formally, a kernel
k(x,x′) defines a Hilbert space with inner product 〈·, ·〉 from
a feature vector Φ(x) such that

∀x,x′ ∈ RD : k(x,x′) = 〈Φ(x),Φ(x′)〉. (2)

If a kernel is shift invariant (also called stationary) it can be
written as k(τ) where τ = x−x′ and Bochner’s Theorem [6]
can be applied to create a representation in terms of its Fourier
transform.
Theorem 1 (Bochner’s Theorem) Any shift invariant kernel
k(τ), τ ∈ RD, with a positive finite measure dµ (s) can be
represented in terms of its Fourier transform as,

k(τ) =

∫
RD

e−is·τdµ (s) . (3)

The proof can be found in [6]. If µ has a density S(s), the
measure dµ (s) can be represented as S(s)ds = dµ (s) and
S(s) is called the spectral density of k. We can then write

k(τ) =

∫
RD

e−is·τS(s)ds = ES(s)
[
e−is·τ

]
,

where ES(s) [·] denotes the expectation w.r.t. the density S(s).
The expected value can thus be approximated as

k(τ) ≈ 1

n

n∑
k=1

e−isk·τ = 〈Φ̂(x), Φ̂(x′)〉, (4)

where s1, . . . , sn are samples from S(s) and

Φ̂(x) =
1√
n

[
e−is1·x, . . . , e−isn·x

]
(5)

is the Fourier feature map approximating k(x,x′). In the case
of the RBF kernel defined as

k(x,x′) = exp

(
− 1

2σ2
‖x− x′‖22

)
, (6)

1The hat in Φ̂ is used to indicate that the feature approximates a kernel in
expectation.



where ‖ · ‖ is the Euclidean distance, the approximation is
obtained in two steps: 1) we generate n samples from S(s) ∼
N (0, 2σ−2I) and b ∼ uniform [−π, π]; 2) for each sample
i compute the feature approximation as cos (six + bi). The
approximation is thus given by

Φ̂Random(x) =
1√
n

[cos (s1x + b1) , . . . , cos (snx + bn)] .

(7)
In Eq. 7 we used the relation e−is·x = cos (s · x)−i sin (s · x)
and noted that the imaginary part must be zero for real kernels.
Also note that S(s) and k(τ) are duals and thus S(s) can be
obtained by calculating the inverse Fourier transform of k(τ).
b is symmetric about 0 and introduced to rotate the projection
into the real axis by a random amount. This is known to
produce better results in several practical problems [13].

B. Nyström features

The Nyström method [22] approximates a kernel matrix
K by projecting it into a set of m inducing points, de-
noted by x̂1, . . . , x̂m. Then, K ≈ KbK̂

†KT
b , where Kb =

[k(x, x̂)]N×m is a kernel matrix computed between all points
in the dataset and the inducing points, K̂ = [k(x̂i, x̂j)]m×m
is a kernel matrix between the inducing points, and K̂† is
the pseudo inverse of K̂. Factorising the approximation into a
feature vector yields:

Φ̂Nyström(x) = D̂−1/2V̂ T (k(x, x̂1), . . . , k(x, x̂m))
T (8)

where D̂ = diag(λ1, . . . , λr) are the r nonnegative eigenvalues
of K̂ in decreasing order and V̂ = (v, . . . ,vr) are the
corresponding eigenvectors. It can be shown [21] that the
Nyström approximation minimises the functional

E(Φ̂) =

∫ (
k(xi,xj)− 〈Φ̂(xi), Φ̂(xj)〉

)2
p(xi)p(xj)dxixj

(9)
where p(xi) and p(xj) are approximated by a set of r samples
from the data. Therefore, the Nyström approximation is nested,
i.e., it depends on the particular dataset being used. This is
in contrast to Random Fourier Features which are dataset
independent and can be computed a priori, once a specific
kernel is defined.

C. Sparse random features

The two approaches above can be used to approximate a
RBF kernel but do not produce sparse features. With the goal
to produce a sparse set of features that can be more easily
optimised with SGD, we explore the properties of the sparse
kernel introduced in [9]. The sparse kernel is defined as:

ksparse (x,x′) ={ [
2+cos(2πr)

3 (1− r) + 1
2π sin (2πr)

]
if r < 1

0 if r ≥ 1
(10)

where the matrix Ω is positive semi-definite and

r =

√
(x− x′)

T
Ω (x− x′), Ω ≥ 0. (11)

This kernel has an important property that for distances r ≥ 1
it returns 0. It also approximates the smoothness of a RBF
kernel being four times differentiable. With this result, we
define the sparse feature as,

Φ̂Sparse(x) = (ksparse(x, x̂1), . . . , ksparse(x, x̂m))
T
, (12)

where, as with the Nyström feature, x̂1, . . . , x̂m is a set of
inducing points where the kernel is centred on. These inducing
points can be uniformly sampled in the area the robot explores
or can be placed in a grid.

D. Feature approximation of kernels on distributions
In realistic mapping tasks there is typically uncertainty

associated with the robot’s position and imperfect sensor
measurements. This uncertainty needs to be taken into account
to accurately reflect the likelihood of occupancy of a given
point in the map. We show how these uncertainties can be in-
corporated in Hilbert maps by deriving feature approximations
to kernels over distributions.

Recent work in Kernel Embeddings has shown how to map
probability distributions to a reproducing kernel Hilbert space
(RKHS) [17, 19]. We follow this idea to derive our approx-
imations. First, we assume that each point x is distributed
as P in a probability space P in (X ,A), where X is the
input space and A is an associated σ-algebra. Let H denote
a RKHS of functions f : X → R with a reproducing kernel
k : X × X → R. The mean map µ from P into H can be
obtained as,

µ : P → H, P 7→
∫
X
k(x, ·)dP(x). (13)

We can produce an empirical estimate of µ by drawing
independent samples from P and creating a set W =
{x(1) . . . ,x(n)} such that

µ̂(P̂) =
1

n

n∑
i=1

k(x(i), ·). (14)

This mean map estimator has been shown to converge to the
mean map at a rate of O(n−

1
2 ) in [17].

With the mean map estimator µ̂, a general positive semi-
definite kernel k(Pi,Pj) on distributions Pi and Pj can be
approximated as follows:

k(Pi,Pj) =

∫ ∫
〈k(xi, ·), k(xj , ·)〉HdPi(xi)dPj(xj) (15)

=

∫ ∫
k(xi,xj)dPi(xi)dPj(xj) (16)

≈ 1

n

1

m

n∑
k=1

m∑
l=1

k(x
(k)
i ,x

(l)
j ). (17)

In the above we used the reproducing property of H and the
fact that k(Pi,Pj) = 〈µPi

, µPj
〉H. Finally, using the random

Fourier, the Nyström or the sparse feature approximations
as detailed above, the feature mapping approximation for a
distribution P in H is

Φ̂(P) =
1

n

n∑
i=1

Φ̂(x(i)), (18)



where x(i) are samples in W from P.

III. ONLINE LEARNING

The logistic regression model described in Section II can be
learnt as part of an online optimisation procedure. However, in
contrast to conventional logistic regression, the model operates
on features Φ̂(x) creating a nonlinear decision boundary.

A. Objective function

To estimate the parameters w we minimise the regularised
negative log-likelihood (NLL) given by:

NLL(w) =

N∑
i=1

− log p(yi|Φ̂(xi),w) +R(w) (19)

=

N∑
i=1

log
(

1 + exp(−yiwT · Φ̂(xi))
)

+R(w),

(20)

where R(w) is a regulariser to prevent overfitting and to
enforce sparseness in w. In this work we use the elastic net
regulariser that has been shown to produce better results than
L1 (LASSO) while preserving the same level of sparsity [26].
The elastic net regulariser is defined as,

R(w) = λ1‖w‖22 + λ2‖w‖1, (21)

where ‖ · ‖2 and ‖ · ‖1 are the L2 and L1 norms respectively,
and λ1 and λ2 are parameters balancing the quadratic term
(also called shrinkage parameter) and degree of sparseness,
respectively.

The gradient of the objective function with respect to w can
be computed as

∇NLL(w) = (22)

=

N∑
i=1

−yiΦ̂(xi)(1 + exp(yiw
T · Φ̂(xi)))

−1

+
∂R(w)

∂w
. (23)

Note that the L1 term in R(w) is non-differentiable so its
derivative is generally approximated using sub-differentials.

B. Stochastic gradient descent

One of the main advantages of utilising logistic regression is
that the negative objective function in Eq. 20 can be optimised
using fast stochastic gradient descent (SGD) methods. This
is because the negative log-likelihood is the sum of the
negative log-likelihoods of individual points. In contrast to
batch algorithms such as Newton’s method that require the
computation of gradients and Hessians for all the points in the
dataset SGD operates iteratively, giving a small step towards
the goal with each data point.

To minimise Eq. 20, SGD iterates between randomly se-
lecting a training point {xt, yt} from D and updating the
parameters w as,

wt = wt−1 − ηtA−1t
∂

∂w
NLL(w), (24)

where η > 0 is known as the learning rate and matrix A can be
seen as a preconditioner to accelerate the convergence rate. In
many cases, A can be set to the identity matrix. This method
is intrinsically online as new data points arriving from sensor
measurements can be selected to update the parameters w. Ad-
ditionally, convergence analysis and generalisation behaviour
have been extensively studied [25, 3]. It has been shown that
even if SGD is applied to an unregularised version of Eq.
20, it achieves an implicit regularisation effect with good
generalisation performance [1]. This facilitates the manual
setting of the regularisation parameter as we know that even
if we set it to zero, the model will still retain some resilience
to overfitting.

The learning rate η is either constant or asymptotically
decaying with the number of iterations. In our implemen-
tation, we use the procedure proposed in [2] and set it to
ηt = 1

λ1(t0+t)
, where t0 is determined empirically from a small

training set sampled from the full dataset.
Eq. 24 is effectively an online update procedure of the

parameters. If the dataset grows, we can effectively select new
points and update the parameters directly to reflect the new
information. Conversely, we can shuffle the data, pass through
each data point once, and repeat the process. This is known
as the batch version of SGD [25]. Finally, we can average
the parameters in the last T iterations to remove some of the
oscillation commonly seen during the optimisation. This is
known as the averaged stochastic gradient descent [2, 23] and
has been shown to improve on the convergence of conventional
SGD for properly set learning rates [23]. Note that SGD has
a constant cost per iteration and asymptotically converges to
the expected risk [2].

IV. RELATIONSHIP TO OTHER METHODS

There are several classifiers in the machine learning litera-
ture that resemble the method described so far, each with pros
and cons. Notably, Pegasos [16] is a different support vector
machine (SVM) formulation where the expensive quadratic
programming optimisation is replaced by stochastic gradient
descent applied to the primal problem. The authors show that
this method scales much better with the number of training
points with strong convergence properties. Pegasos was not,
however, trained on kernel feature approximations as our
method and used a different loss function. The main reason
we did not use a max-margin loss or hinge loss as with SVMs
and chose the logistic regression formulation relates to the
probabilistic interpretation of the results naturally obtained
with logistic regression. An example can be seen in Fig. 1
where we show the same continuous occupancy map produced
by the two methods. As SVMs do not produce a probabilistic
interpretation directly, artificial probabilistic outputs are gener-
ally obtained using the method in [12]. However, as the figure
shows, this introduces a problem; areas not explored, with no
sensory information are classified as either occupied or non-
occupied with high confidence. Conversely, with the logistic
regression formulation, unexplored areas are classified with
probability of 50% of being occupied as expected.



Fig. 1: Comparison between maps produced with Logistic
Regression and SVMs. Left: Data points used for training,
blue are non-occupied and brown are occupied. Right: Map
produced with SVMs and Nyström features, with colour indi-
cating probability of occupancy. The equivalent map generated
with logistic regression is shown in Figure 6 (top left). Note
that the SVM map is over confident about the occupancy status
in areas with no data points, assumed unoccupied. This does
not occur with the logistic regression map. Axis units are in
metres.

This work also borrows ideas from Gaussian process oc-
cupancy maps (GPOMs) [11, 10] in that both attempt to
represent the space in a continuous manner. Both produce
probabilistic interpretations of occupancy, and both utilise
kernels to represent data points in a high dimensional space.
However, GPOMs suffer from a high computational cost
and are significantly more difficult to be implemented. As
a Bayesian method, GPOM do not have parameters that
require manual tuning. That is an advantage compared to
Hilbert maps. However, we noticed in our experiments that
the regularisation parameters as well as the kernel parameters
can be easily adjusted and the values do not need to be
changed for different environments. Therefore, Hilbert maps
offer significant computational advantages over GPOM at a
reasonable price. Note also that Hilbert maps can be extended
to a variational Bayesian logistic regression formulation as
discussed in future work.

Another type of kernel approximation based on the Random
Kitchen Sinks (RKSs) but with better scalability properties
to high dimensional data was proposed in [7]. The authors
show how to improve the cost of computing the features from
O(nmd) to O(nm log d), where m is the number of features,
n is the number of samples and d is the dimension of the
inputs. The method is based on a fast factorised scheme to
create the random matrices s in Eq. 7. Even though this
extension is interesting for problems with high dimensional
data such as in computer vision, it is less effective in our
occupancy mapping problem as the dimensionality of the data
is at most 3 for the 3D case. The implementation is also more
complicated than the simple RKS so less likely to be appealing
to real-time robotics applications.

An interesting study comparing RKS and Nyström features
on several regression and classification problems was pre-
sented in [24]. The authors show that when there is a large
gap between the eigen-spectrum D̂ in Eq. 8, the Nyström

method can produce impressive results and outperform RKS.
As we shall see in the experiments, this was observed in
the occupancy mapping problem where the Nyström method
required a much smaller set of features to achieve similar
accuracy. Note however, that the Nyström method is data
dependent and the features cannot be precomputed as with
RKS.

V. EXPERIMENTS

In the experiments unless stated otherwise we set the
parameters of the model as follows: The kernel parameter σ
was 1.0, the number of components m for each feature was
Fourier=10k, Nyström=1k and sparse=2k. The regularisation
parameters were λ1 = 0.0001 and λ2 = 0.15 (for the sparse
case λ1 = 0.001). These parameters were obtained through
visual inspection of the results and remained unchanged for
each of the maps we experimented with. Grid search can also
be applied to set these parameters automatically.

A. Comparisons between the features

In the first experiment we compare the three approaches
to construct features for Hilbert maps. The experiment
was conducted using the data from Intel-Lab (available at
http://radish.sourceforge.net/). To better understand the gen-
eralisation power of the features, we created a series of
occupancy maps where several beams from each observation
were removed. The maps created were compared against test
measurements retained for evaluation purposes and therefore
not presented to algorithm. Figure 2 shows the maps created
by the three features and the conventional occupancy grid
maps for 10%, 30%, 60% and 100% of the original data
incorporated. It can be seen that for both methods, the maps
generated with Hilbert maps are much smoother and represent
the uncertainty in the occupancy status of the environment
more clearly. The occupancy grid maps, despite being sharper,
contain a series of artefacts originated from anomalous ob-
servations generated from laser returns hitting non-reflective
objects or influenced by glass. The Fourier features exhibit
artefacts resulted from the cosine approximation to the RBF
kernel in areas without observations, but perform comparably
to the other two features in areas with more observations.

Figure 3 shows the area under the receiver operating char-
acteristic (ROC) curve for the four approaches (Hilbert maps
with Fourier, Nyström, sparse features, and occupancy grid
maps) for several cases where a percentage of the observations
is removed. It can be observed that the Sparse features and the
Nyström perform the best. We can also observe that occupancy
grid maps have problems in representing the environment
properly when more than 50% of the data is removed. This
indicates that Hilbert maps are more robust and possess better
generalisation performance than occupancy grids.

In the second experiment we compare Hilbert maps with
sparse features against occupancy grid maps for the outdoor
dataset recorded at the University of Freiburg, also available
at (http://radish.sourceforge.net/). Figure 4 shows the maps
produced by both methods when 75% of the laser data is



Fig. 2: Evolution of the different maps as observations are incrementally added. From top to bottom we have Sparse RBF,
Nyström, Fourier and occupancy grid maps with 10%, 30%, 60% and 100% (left to right) of the data incorporated. Axis units
are in metres.

removed from each scan. Removing data from the scans allows
to better assess the generalisation power of both methods. For
this test the regulariser parameter λ2 was changed to 0.6 to
exploit the sparsity of the data. It can be observed that the
Hilbert map is significantly more resilient to outliers and noisy
observations that naturally exist when navigating outdoors.
Roads are more clearly identifiable and the map better reflects
the actual shapes as can be seen in the aerial photo. Note
that the width of the roads is exaggerated in the occupancy
grids mostly due to spurious observations on vegetation.
Quantitatively, this is confirmed in Table I where area under
ROC for both methods is presented. Also note the overall
uncertainty of the problem due to the noisy observations is

much better handled. For this problem, due to the large number
of observations, GPOM cannot be computed without sparse or
nearest neighbour approximations that require storage of all
the data.

Method Area under ROC curve Runtime

Occupancy grid map 0.61 88 s
Sparse Hilbert map 0.80 850 s

TABLE I: Area under the ROC curve and runtime for occu-
pancy grid maps and sparse Hilbert maps when evaluated on
the outdoor dataset with 75% of each laser scan missing.



Fig. 4: Visualisation of the maps produced when 75% of the laser data is removed from each scan. The grid map (left)
appears very noisy while the sparse Hilbert map (middle) shows obstacles and free areas clearly with areas barely observed by
laser scans being marked as unknown. Comparing with the aerial image (right) we can see that the high certainty free areas
correspond to footpaths along which the robot travelled. Axis units are in metres.
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Fig. 3: Evolution of the area under curve for the three mapping
methods when a variable amount of data is removed from each
scan.

B. Convergence of stochastic gradient descent

In this experiment we compare the convergence of SGD
for the full batch case where all the data is presented to the
algorithm multiple times and the incremental version where
the algorithm sees each datapoint only once. This experiment
was conducted on the Intel-Lab dataset with Nyström and
sparse features. Figure 5 shows the value of the SGD objective
being minimised with more iterations. For each iteration of the
full SGD, all points are presented to the algorithm while for
the incremental version, only a small set is presented without
repetition. As expected, the incremental version oscillates
more than the full version however both cases achieve a similar
final energy value. The incremental version is significantly
faster to execute; the full SGD takes approximately 21 seconds
to complete 80 iterations with Nyström features and 1 second
with sparse features while the incremental version takes 0.3
second with Nyström and 0.02 with sparse features. This result
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Fig. 5: Evaluation of the solution quality obtained when
performing incremental SGD as opposed to full SGD with
a fixed number of iterations using both Nyström and sparse
features.

indicates the benefits of incremental SGD to quickly arrive
at a solution even without observing the entire dataset. Also
it shows that SGD can take advantage of sparse features to
significantly speed up the computation.

C. Comparison with GPOM

Results comparing Hilbert maps with the three features
against GPOM for the map in Figure 1 are presented in Ta-
ble II. Both methods achieve remarkable classification results
but as expected, GPOM are much more costly to compute,
typically O(n3) on the number of datapoints. Hilbert maps
can produce similar results with an order of magnitude faster.
Most of the computational cost in Hilbert maps is actually the
feature computation rather than SGD. The Fourier features
are the fastest followed by Sparse and Nyström that requires
an eigen decomposition operation. Note however, that in both
cases the features can be computed in parallel, thus presenting
significant speedups on GPUs. The overall cost of Hilbert
maps is O(m) on the number of features per datapoint.



Method Area under ROC curve Runtime (s)

GPOM 1.00 38.0
Sparse Hilbert map 1.00 3.2
Fourier Hilbert map 0.98 1.2
Nyström Hilbert map 0.98 6.9

TABLE II: Comparison of map quality and runtime of GPOM
with the three proposed methods on the synthetic example
shown in Figure 1. All methods outperform the GPOM by a
large margin while obtaining identical or very similar results.

D. Noisy inputs

In this experiment we demonstrate the ability of the features
on distributions described in Section II-D to deal with errors
in the position of observations. This also addresses the case
where observations are partially observable and provided as
distributions over the location. We use the synthetic dataset
presented in Figure 1 but added noise to the position of the
points. This simulates errors in localisation commonly present
in real problems but allows us to compare against the ground
truth. Figure 6 shows the original Hilbert map obtained when
there is no noise in the data (top left). The data is then
corrupted by Gaussian noise with 20 cm standard deviation (as
a reference the size of the map is about 30 metres). The Hilbert
map with Nyström features obtained on the corrupted dataset
is displayed in the top right. It can be observed that walls and
the shapes are much less defined. This is also the case for the
occupancy grid maps (bottom right) where not even the walls
can be properly identified. The Hilbert map result with Nytröm
features on distributions generates the best result (bottom left)
which resembles closely the result obtained when no noise is
added to the data. This demonstrates the ability of the kernel
approximation on distributions to handle highly noisy data.

VI. CONCLUSION AND FUTURE WORK

This paper introduced a novel occupancy mapping tech-
nique, the Hilbert maps. The techniques improves over occu-
pancy grid maps in several ways but notably it does not require
discretisation of the space providing maps at any resolution,
and it captures spatial relationships to provide better generali-
sation in areas with no measurements while being more robust
to outliers. The technique explores recent advancements in
kernel machines, in particular kernel approximations, to allow
efficient learning through stochastic gradient descent where
strong convergence guarantees exist even when each data point
is visited only once during learning. Experimental results were
very encouraging showing that the maps produced are less
influenced by outliers and more accurate in representing the
underlying uncertainty.

An important advantage of online training strategies based
on SGD relates to the speed in which maps can be updated
after major trajectory corrections during navigation such as
loop closures. Upon loop closure, SGD can be executed on
the updated data until converge to create a new updated map.
This procedure can be used in machine learning problems to
deal with the problem of non-stationarity in sequential data
(also known as covariance shift [20]). The advantage of Hilbert

Fig. 6: Visualisation of the impact of noisy data. The top
left image shows the result obtained when no perturbations
are present using Hilbert maps. In the top right the data is
perturbed with no compensation performed in the mapping.
The bottom left image shows how the RKHS allows us to
recover the map. The bottom right shows the effect data
sparsity and noise has on occupancy grid maps which would
not be suitable for actual use. Axis units are in metres.

maps is that SGD is very fast and inexpensive to run therefore
retraining can be performed efficiently.

There are several avenues for future work. First the paper
did not explore the construction of 3D occupancy maps.
Hilbert maps are general and should equally be able to
represent 3D space; in fact some of its properties such as
generalisation performance and ability to deal with data with
different spatial density would be even more important in
this case. Second, the method is formulated as a frequentist
technique and requires the manual tuning of kernel and reg-
ularisation parameters. Even though recent techniques such
as Bayesian optimisation can be used for this purpose [18],
the more principled solution is to formulate the problem
as Bayesian learning task. Unfortunately, this will lead to
non-analytical solutions to the posterior and approximation
techniques such as variational methods will need to be applied.
Also, the objective function will no longer be convex and the
SGD convergence guarantees in this case are less developed.
Nevertheless this remains an interesting area for further in-
vestigation. Finally, occupancy mapping is just one example
of many other problems where this technique can be applied.
The fundamental idea of the algorithm which is to provide
probabilistic predictions based on a stream of data captured
by a moving robot in an online and efficient manner has a
number of other applications. For example, the algorithm can
be used to learn optimal policies in reinforcement learning, or
to perform online object recognition.
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